Fekete-Szego Type Problems and Their Applications for a Subclass of q-Starlike Functions with Respect to Symmetrical Points

被引:29
作者
Srivastava, Hari Mohan [1 ,2 ,3 ]
Khan, Nazar [4 ]
Darus, Maslina [5 ]
Khan, Shahid [6 ]
Ahmad, Qazi Zahoor [4 ]
Hussain, Saqib [7 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[2] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[3] Azerbaijan Univ, Dept Math & Informat, 71 Jeyhun Hajibeyli St, AZ-1007 Baku, Azerbaijan
[4] Abbottabad Univ Sci & Technol, Dept Math, Abbottabad 22010, Pakistan
[5] Univ Kebangsaan Malaysia, Fac Sci & Technol, Dept Math Sci, Bangi 43600, Selangor, Malaysia
[6] Riphah Int Univ Islamabad, Dept Math, Islamabad 44000, Pakistan
[7] Comsats Univ Islamabad, Dept Math, Abbottabad Campus, Abbottabad 22010, Pakistan
关键词
analytic functions; quantum (orq-) calculus; conic domain; q-derivative operator; Hankel determinant; Toeplitz matrices; Fekete-Szego problem; q-Bernardi integral operator; COEFFICIENT INEQUALITIES; CONVEX;
D O I
10.3390/math8050842
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, by using the concept of the quantum (orq-) calculus and a general conic domain Omega(k,q), we study a new subclass of normalized analytic functions with respect to symmetrical points in an open unit disk. We solve the Fekete-Szego type problems for this newly-defined subclass of analytic functions. We also discuss some applications of the main results by using aq-Bernardi integral operator.
引用
收藏
页数:18
相关论文
共 39 条
[1]   Some Subordination Results on q-Analogue of Ruscheweyh Differential Operator [J].
Aldweby, Huda ;
Darus, Maslina .
ABSTRACT AND APPLIED ANALYSIS, 2014,
[2]  
[Anonymous], 1990, ENCY MATH ITS APPL
[3]  
[Anonymous], SYMMETRY BASEL
[4]  
[Anonymous], 1992, P C COMPLEX ANAL TIA
[5]  
[Anonymous], 2014, INDO AM J LIFE SCI B
[6]  
Babalola K. O., 2007, INEQUAL TH APPL, V6, P1
[7]   CONVEX AND STARLIKE UNIVALENT FUNCTIONS [J].
BERNARDI, SD .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 135 (JAN) :429-&
[8]  
Duren P. L., 1983, UNIVALENT FUNCTIONS, V259
[9]   A generalization of Livingston's coefficient inequalities for functions with positive real part [J].
Efraimidis, Iason .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 435 (01) :369-379
[10]  
Goodman A. W., 1983, Univalent Functions, VII