Least-squares mixed finite element methods for the RLW equations

被引:25
作者
Gu, Haiming [1 ]
Chen, Ning [1 ]
机构
[1] Qingdao Univ Sci & Technol, Dept Math & Phys, Qingdao 266042, Peoples R China
关键词
RLW equations; least-squares mixed finite element; error estimates;
D O I
10.1002/num.20285
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A least-squares mixed finite element (LSMFE) schemes are formulated to solve the 1D regularized long wave (RLW) equations and the convergence is discussed. The L-2 error estimates of LSMFE methods for RLW equations under the standard regularity assumption on the finite element partition are given. (C) 2007 Wiley Periodicals, Inc.
引用
收藏
页码:749 / 758
页数:10
相关论文
共 13 条
[1]  
Adams, 1975, SOBLEV SPACES
[2]  
AZIZ AK, 1985, MATH COMPUT, V44, P53, DOI 10.1090/S0025-5718-1985-0771030-5
[3]   NUMERICAL SCHEMES FOR A MODEL FOR NONLINEAR DISPERSIVE WAVES [J].
BONA, JL ;
PRITCHARD, WG ;
SCOTT, LR .
JOURNAL OF COMPUTATIONAL PHYSICS, 1985, 60 (02) :167-186
[4]   First-order system least squares for second-order partial differential equations .2. [J].
Cai, ZQ ;
Manteuffel, TA ;
McCormick, SF .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (02) :425-454
[5]   LEAST-SQUARES MIXED FINITE-ELEMENT METHODS FOR NONSELF-ADJOINT ELLIPTIC PROBLEMS .2. PERFORMANCE OF BLOCK-ILU FACTORIZATION METHODS [J].
CAREY, GF ;
PEHLIVANOV, AI ;
VASSILEVSKI, PS .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1995, 16 (05) :1126-1136
[6]   A least-squares finite element method for incompressible flow in stress-velocity-pressure version [J].
Chang, CL ;
Yang, SY ;
Hsu, CH .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1995, 128 (1-2) :1-9
[7]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[8]   Characteristic finite element methods for nonlinear Sobolev equations [J].
Gu, HM .
APPLIED MATHEMATICS AND COMPUTATION, 1999, 102 (01) :51-62
[9]  
Gu HM, 2000, INDIAN J PURE AP MAT, V31, P505
[10]  
Gu HM, 2000, APPL MATH MECH-ENGL, V21, P557