Performance enhancement of carbon-coated Si nanoparticles for lithium-ion batteries through the generation of lithophilic sites by a simple oxidation process

被引:11
作者
Chaudhari, Kiran N. [1 ]
Rajeev, K. K. [1 ,2 ]
Kim, Shinik [1 ,4 ]
Nersisyan, Hayk [3 ]
Kirakosyan, Artavazd [3 ]
Jang, Wonseok [1 ,2 ]
Choi, Jihoon [3 ]
Lee, Jong Hyeon [3 ]
Kim, Tae-Hyun [1 ,2 ]
Kim, Yeonho [1 ,4 ]
机构
[1] Incheon Natl Univ, Res Inst Basic Sci, Incheon 22012, South Korea
[2] Incheon Natl Univ, Dept Chem, Incheon 22012, South Korea
[3] Chungnam Natl Univ, Dept Mat Sci & Engn, Daejeon 34134, South Korea
[4] Konkuk Univ, Dept Appl Chem, Chungju, South Korea
基金
新加坡国家研究基金会;
关键词
Silicon nanoparticle; Polydopamine; Surface functionalization; Lithophilic sites; Lithium-ion batteries; ANODE MATERIALS; DOPED CARBON; C NANOCOMPOSITES; SILICON ANODES; FABRICATION; INTERLAYER; NANOSHEETS; SURFACE; FACILE;
D O I
10.1016/j.apsusc.2022.154361
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Silicon nanoparticles (Si NPs) are potential anode materials for next-generation lithium-ion batteries due to their natural abundance, low discharge potential, and high theoretical capacity. Carbon coating improves the capacity of the Si NPs, protects them from disintegration during the lithiation/delithiation process, and provides an additional conductive matrix. Surface modification as a tool leading to capacity enhancement in carbon-coated Si NPs has rarely been explored. It is a straightforward process that involves the surface functionalization of carbon-coated Si NPs (Si-C) with the oxidizing acidic mixture. The surface-treated Si-C functionalized with carboxyl and hydroxyl groups in excess on the carbon surface of Si-C NPs. As a result of surface modification, the acid-treated Si-C (Si-C-AT) displayed a higher reversible capacity of 1575 mA h g(-1) after 200 cycles compared to the Si-C (1261 mA h g(-1)) and bare Si (961 mA h g(-1)). This high capacity of Si-C-AT is a cumulative outcome of the functional groups and the disordered structure of the carbon shell. The functional groups act as lithophilic sites, and the disordered carbon shell facilitates the insertion-desertion of lithium ions. The simple surface modification strategy proposed in the present study significantly enhances the cyclability of the Si-C-AT NPs and has great potential for application in carbon-coated materials for lithium-ion batteries.
引用
收藏
页数:11
相关论文
共 52 条
[1]   The success story of graphite as a lithium-ion anode material - fundamentals, remaining challenges, and recent developments including silicon (oxide) composites [J].
Asenbauer, Jakob ;
Eisenmann, Tobias ;
Kuenzel, Matthias ;
Kazzazi, Arefeh ;
Chen, Zhen ;
Bresser, Dominic .
SUSTAINABLE ENERGY & FUELS, 2020, 4 (11) :5387-5416
[2]   Sulfur: an intermediate template for advanced silicon anode architectures [J].
Baasner, Anne ;
Doerfler, Susanne ;
Piwko, Markus ;
Desilani, Sebastien ;
Brueckner, Jan ;
Althues, Holger ;
Kaskel, Stefan .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (30) :14787-14796
[3]   Transforming Hair into Heteroatom-Doped Carbon with High Surface Area [J].
Chaudhari, Kiran N. ;
Song, Min Young ;
Yu, Jong-Sung .
SMALL, 2014, 10 (13) :2625-2636
[4]   Nano-Si/C microsphere with hollow double spherical interlayer and submicron porous structure to enhance performance for lithium-ion battery anode [J].
Chen, Hedong ;
He, Shenggong ;
Hou, Xianhua ;
Wang, Shaofeng ;
Chen, Fuming ;
Qin, Haiqing ;
Xia, Yingchun ;
Zhou, Guofu .
ELECTROCHIMICA ACTA, 2019, 312 (242-250) :242-250
[5]   Critical Role of Silicon Nanoparticles Surface on Lithium Cell Electrochemical Performance Analyzed by FTIR, Raman, EELS, XPS, NMR, and BDS Spectroscopies [J].
Delpuech, N. ;
Mazouzi, D. ;
Dupre, N. ;
Moreau, P. ;
Cerbelaud, M. ;
Bridel, J. S. ;
Badot, J. -C. ;
De Vito, E. ;
Guyomard, D. ;
Lestriez, B. ;
Humbert, B. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (31) :17318-17331
[6]   Carbon-coated silicon as anode material for lithium ion batteries: advantages and limitations [J].
Dimov, N ;
Kugino, S ;
Yoshio, M .
ELECTROCHIMICA ACTA, 2003, 48 (11) :1579-1587
[7]   Carbon coated porous silicon flakes with high initial coulombic efficiency and long-term cycling stability for lithium ion batteries [J].
Dou, Xiaoyong ;
Chen, Ming ;
Zai, Jiantao ;
De, Zhen ;
Dong, Boxu ;
Liu, Xuejiao ;
Ali, Nazakat ;
Tsega, Tsegaye Tadesse ;
Qi, Rongrong ;
Qian, Xuefeng .
SUSTAINABLE ENERGY & FUELS, 2019, 3 (09) :2361-2365
[8]   Lithium ion battery degradation: what you need to know [J].
Edge, Jacqueline S. ;
O'Kane, Simon ;
Prosser, Ryan ;
Kirkaldy, Niall D. ;
Patel, Anisha N. ;
Hales, Alastair ;
Ghosh, Abir ;
Ai, Weilong ;
Chen, Jingyi ;
Yang, Jiang ;
Li, Shen ;
Pang, Mei-Chin ;
Bravo Diaz, Laura ;
Tomaszewska, Anna ;
Marzook, M. Waseem ;
Radhakrishnan, Karthik N. ;
Wang, Huizhi ;
Patel, Yatish ;
Wu, Billy ;
Offer, Gregory J. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (14) :8200-8221
[9]   Ingeniously Designed Yolk-Shell-Structured FeSe2@NDC Nanoboxes as an Excellent Long-Life and High-Rate Anode for Half/Full Na-Ion Batteries [J].
Feng, Jian ;
Luo, Shao-Hua ;
Zhan, Yang ;
Yan, Sheng-Xue ;
Li, Peng-Wei ;
Zhang, Lin ;
Wang, Qing ;
Zhang, Ya-Hui ;
Liu, Xin .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (43) :51095-51106
[10]   Rational Design of Yolk-Shell Zn-Co-Se@N-Doped Dual Carbon Architectures as Long-Life and High-Rate Anodes for Half/Full Na-Ion Batteries [J].
Feng, Jian ;
Luo, Shao-hua ;
Yan, Sheng-xue ;
Zhan, Yang ;
Wang, Qing ;
Zhang, Ya-hui ;
Liu, Xin ;
Chang, Long-jiao .
SMALL, 2021, 17 (46)