Taming singularities of the quantum Fisher information

被引:6
作者
Goldberg, Aaron Z. [1 ]
Romero, Jose L. [2 ]
Sanz, Angel S. [2 ]
Sanchez-Soto, Luis L. [2 ,3 ]
机构
[1] Natl Res Council Canada, 100 Sussex Dr, Ottawa, ON K1A 0R6, Canada
[2] Univ Complutense, Fac Fis, Dept Opt, Madrid 28040, Spain
[3] Max Planck Inst Phys Lichts, Staudtstr 2, D-91058 Erlangen, Germany
关键词
Quantum metrology; quantum estimation theory; Fisher information; STATISTICAL DISTANCE;
D O I
10.1142/S0219749921400049
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Quantum Fisher information matrices (QFIMs) are fundamental to estimation theory: they encode the ultimate limit for the sensitivity with which a set of parameters can be estimated using a given probe. Since the limit invokes the inverse of a QFIM, an immediate question is what to do with singular QFIMs. Moreover, the QFIM may be discontinuous, forcing one away from the paradigm of regular statistical models. These questions of nonregular quantum statistical models are present in both single- and multiparameter estimation. Geometrically, singular QFIMs occur when the curvature of the metric vanishes in one or more directions in the space of probability distributions, while QFIMs have discontinuities when the density matrix has parameter-dependent rank. We present a nuanced discussion of how to deal with each of these scenarios, stressing the physical implications of singular QFIMs and the ensuing ramifications for quantum metrology.
引用
收藏
页数:19
相关论文
共 63 条
  • [1] Optimal estimation of losses at the ultimate quantum limit with non-Gaussian states
    Adesso, G.
    Dell'Anno, F.
    De Siena, S.
    Illuminati, F.
    Souza, L. A. M.
    [J]. PHYSICAL REVIEW A, 2009, 79 (04):
  • [2] A perspective on multiparameter quantum metrology: From theoretical tools to applications in quantum imaging
    Albarelli, F.
    Barbieri, M.
    Genoni, M. G.
    Gianani, I
    [J]. PHYSICS LETTERS A, 2020, 384 (12)
  • [3] Ben-Israel A., 1977, GEN INVERSES THEORY
  • [4] Quantum-enhanced measurements without entanglement
    Braun, Daniel
    Adesso, Gerardo
    Benatti, Fabio
    Floreanini, Roberto
    Marzolino, Ugo
    Mitchell, Morgan W.
    Pirandola, Stefano
    [J]. REVIEWS OF MODERN PHYSICS, 2018, 90 (03)
  • [5] STATISTICAL DISTANCE AND THE GEOMETRY OF QUANTUM STATES
    BRAUNSTEIN, SL
    CAVES, CM
    [J]. PHYSICAL REVIEW LETTERS, 1994, 72 (22) : 3439 - 3443
  • [7] On quantumness in multi-parameter quantum estimation
    Carollo, Angelo
    Spagnolo, Bernardo
    Dubkov, Alexander A.
    Valenti, Davide
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2019,
  • [8] Cramer H., 1999, Mathematical Methods of Statistics
  • [9] Davison A.C., 2008, STAT MODELS
  • [10] Multi-parameter estimation beyond quantum Fisher information
    Demkowicz-Dobrzanski, Rafal
    Gorecki, Wojciech
    Guta, Madalin
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (36)