Activated sintering of W-HfC composite materials

被引:3
作者
Vikhman, S. V. [1 ]
Klimova, O. G. [2 ]
Ordan'yan, S. S. [1 ]
Tolochko, O. V. [2 ]
Cheong, D-I. [3 ]
机构
[1] St Petersburg State Univ Technol Tech Univ, St Petersburg 190013, Russia
[2] St Petersburg State Polytech Univ, St Petersburg 195251, Russia
[3] Chungnam Natl Univ, Taejon, South Korea
关键词
tungsten; tungsten nanopowders; hafnium carbide; mechanical activation; uniaxial compaction; activated sintering; density; porosity; BEHAVIOR; TUNGSTEN;
D O I
10.3103/S1067821211030242
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
The features of consolidation of the particles during the activated sintering of tungsten powders with different values of dispersity (d (av) = 2-3 and 0.8-1.0 mu m) are investigated. Sintering was activated by introducing nickel additives (up to 0.5 wt %), tungsten nanoparticles (up to 30 wt %), and finely dispersed hafnium carbide (5-30 vol %) with subsequent milling in a vibrating mill. The uniaxial compaction of the samples has been performed under pressures from 50 to 1000 MPa, and sintering was performed in vacuum at 1850A degrees C with holding for 1 h. It is shown that the additives of tungsten carbide increase the density of sintered billets and, in combination with dispersed hafnium carbide, tungsten-based composite materials with a grain size up to 2 mu m can be obtained.
引用
收藏
页码:285 / 289
页数:5
相关论文
共 50 条
[41]   Characterization of W/Fe functionally graded materials manufactured by resistance sintering under ultra-high pressure [J].
Qu, Dandan ;
Zhou, Zhangjian ;
Tan, Jun ;
Aktaa, Jarir .
FUSION ENGINEERING AND DESIGN, 2015, 91 :21-24
[42]   Electropulse ("Spark") Plasma Sintering of Tungsten and W+5%Ni Nanopowders Obtained by High-Energy Ball Milling [J].
Lantsev, E. A. ;
Malekhonova, N. V. ;
Nokhrin, A. V. ;
Smetanina, K. E. ;
Murashov, A. A. ;
Shcherbak, G. V. ;
Voronin, A. V. ;
Atopshev, A. A. .
TECHNICAL PHYSICS, 2024, 69 (05) :1249-1258
[43]   Spark plasma sintering of TaC-HfC UHTC via disilicides sintering aids [J].
Ghaffari, S. A. ;
Faghihi-Sani, M. A. ;
Golestani-Fard, F. ;
Mandal, H. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2013, 33 (08) :1479-1484
[44]   Compaction Kinetics with Liquid-Phase Sintering of W – Ni – Sn Pseudoalloys [J].
Valentin I. Nizhenko ;
Valerii V. Skorokhod .
Powder Metallurgy and Metal Ceramics, 2004, 43 :364-370
[45]   Effect of hydrogen-helium interaction on their segregation and desorption at the W/HfC interfaces by first-principles calculations [J].
Zhang, Yuxiang ;
Zhang, Yange ;
Li, Xiangyan ;
Xu, Yichun ;
Xie, Z. M. ;
Liu, R. ;
Liu, C. S. ;
Wu, Xuebang .
JOURNAL OF NUCLEAR MATERIALS, 2024, 592
[46]   Manufacturing of W/steel composites using electro-discharge sintering process [J].
Ganesh, Vishnu ;
Leich, Lennart ;
Dorow-Gerspach, Daniel ;
Heuer, Simon ;
Coenen, Jan Willem ;
Wirtz, Marius ;
Pintsuk, Gerald ;
Gormann, Friedel ;
Lied, Philipp ;
Baumgaertner, Siegfried ;
Theisen, Werner ;
Linsmeier, Christian .
NUCLEAR MATERIALS AND ENERGY, 2022, 30
[47]   Dynamic properties of Ti-W alloys fabricated by Spark Plasma Sintering [J].
Lomnitz, Alon ;
Amir, Ben ;
Kalabukhov, Sergey ;
Hayun, Shmuel ;
Sadot, Oren .
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2025, 35 :4634-4646
[48]   The effects of SiC addition on the sintering densification, phases, microstructure and mechanical properties of W [J].
Li, Yanping ;
Fan, Jinglian ;
Han, Yong ;
Cheng, Huichao ;
Ye, Lei ;
Du, Zhiyuan ;
Li, Yuan .
INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2021, 98
[49]   Compaction kinetics with liquid-phase sintering of W-Ni-Snpseudoalloys [J].
Nizhenko, VI ;
Petrishchev, VY ;
Skorokhod, VV .
POWDER METALLURGY AND METAL CERAMICS, 2004, 43 (7-8) :364-370
[50]   Activated sintering of tungsten alloys through conventional and spark plasma sintering process [J].
Senthilnathan, N. ;
Annamalai, A. Raja ;
Venkatachalam, G. .
MATERIALS AND MANUFACTURING PROCESSES, 2017, 32 (16) :1861-1868