Mechanical properties of nanocrystalline copper under thermal load

被引:11
作者
Choi, Yongsoo [1 ]
Park, Youngho [2 ,3 ]
Hyun, Sangil [3 ]
机构
[1] Hankyong Natl Univ, Fac Liberal Arts & Basics Sci, Anseong 456749, South Korea
[2] Hankyong Natl Univ, Ctr Human Sci & Engn, Anseong 456749, South Korea
[3] Korea Inst Ceram Engn & Technol, BioIT Ctr, Seoul 153801, South Korea
关键词
Nanocrystalline materials; Mechanical strength; Molecular dynamics; Hall-Petch effect; Thermal load; MOLECULAR-DYNAMICS; METALS; DEFORMATION; DISLOCATIONS; NUCLEATION; CU; STRENGTH; BEHAVIOR;
D O I
10.1016/j.physleta.2011.12.027
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The material properties of nanocrystallines are known to generally have a strong dependence on their nanoscale morphology, such as the grain size. The Hall-Petch effect states that the mechanical strength of nanocrystalline materials can vary substantially for a wide range of grain sizes: this is attributed to the competition between intergranular and intragranular deformations. We employed classical molecular dynamics simulations to investigate the morphology-dependent mechanical properties of nanocrystalline copper. The degradation of material properties under thermal load was investigated during fast strain rate deformation, particularly for the grain size. Our simulation results showed that the thermal load on the nanocrystalline materials alters the grain-size behavior of the mechanical properties. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:758 / 762
页数:5
相关论文
共 27 条
[11]   Plastic deformation of nanocrystalline copper-antimony alloys [J].
Rajgarhia, Rahul K. ;
Spearot, Douglas E. ;
Saxena, Ashok .
JOURNAL OF MATERIALS RESEARCH, 2010, 25 (03) :411-421
[12]   Elastic and tensile behavior of nanocrystalline copper and palladium [J].
Sanders, PG ;
Eastman, JA ;
Weertman, JR .
ACTA MATERIALIA, 1997, 45 (10) :4019-4025
[13]   A maximum in the strength of nanocrystalline copper [J].
Schiotz, J ;
Jacobsen, KW .
SCIENCE, 2003, 301 (5638) :1357-1359
[14]   Atomic-scale simulations of the mechanical deformation of nanocrystalline metals [J].
Schiotz, J ;
Vegge, T ;
Di Tolla, FD ;
Jacobsen, KW .
PHYSICAL REVIEW B, 1999, 60 (17) :11971-11983
[15]   Softening of nanocrystalline metals at very small grain sizes [J].
Schiotz, J ;
Di Tolla, FD ;
Jacobsen, KW .
NATURE, 1998, 391 (6667) :561-563
[16]   Grain-size dependence of the relationship between intergranular and intragranular deformation of nanocrystalline Al by molecular dynamics simulations [J].
Shimokawa, T ;
Nakatani, A ;
Kitagawa, H .
PHYSICAL REVIEW B, 2005, 71 (22)
[17]   Rapid estimation of elastic constants by molecular dynamics simulation under constant stress [J].
Shinoda, W ;
Shiga, M ;
Mikami, M .
PHYSICAL REVIEW B, 2004, 69 (13) :134103-1
[18]   Nucleation and propagation of dislocations in nanocrystalline fcc metals [J].
Van Swygenhoven, H ;
Derlet, PM ;
Froseth, AG .
ACTA MATERIALIA, 2006, 54 (07) :1975-1983
[19]   Microscopic description of plasticity in computer generated metallic nanophase samples: A comparison between Cu and Ni [J].
Van Swygenhoven, H ;
Spaczer, M ;
Caro, A .
ACTA MATERIALIA, 1999, 47 (10) :3117-3126
[20]   Plastic behavior of nanophase metals studied by molecular dynamics [J].
Van Swygenhoven, H ;
Caro, A .
PHYSICAL REVIEW B, 1998, 58 (17) :11246-11251