Simulation of tunneling field-effect transistors with extended source structures

被引:11
|
作者
Yang, Yue [1 ]
Guo, Pengfei [1 ]
Han, Genquan [1 ]
Low, Kain Lu [1 ]
Zhan, Chunlei [1 ]
Yeo, Yee-Chia [1 ]
机构
[1] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117576, Singapore
关键词
PERFORMANCE; DESIGN; MOSFET;
D O I
10.1063/1.4729068
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper, we perform a study of novel source structures in double-gate (DG) Tunneling Field-Effect Transistors (TFETs) by two-dimensional numerical simulation of source structures in double gate tunneling field effect. Extended source structures are employed in both pure Ge TFETs and Ge-source Si-body TFETs, and on-state current enhancement is observed in simulation results. Compared with conventional p(+)-p(-)-n(+) TFETs, the p(+) region in extended source TFETs extends underneath the gates. When large gate bias is applied, high electric field xi, which distributes along p(+)-p(-) junction edge extends into the middle of the channel. More tunneling paths with short lengths are available in the on-state, effectively boosting the drive current of TFET. In addition, the extent of performance enhancement depends on the geometry of the extended source. By incorporating heterojunction, TFET drive current can be increased further, which is up to 0.8 mA/mu m at V-GS = V-DS = 0.7 V. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729068]
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Simulation of graphene nanoribbon field-effect transistors
    Fiori, Gianluca
    Iannaccone, Giuseppe
    IEEE ELECTRON DEVICE LETTERS, 2007, 28 (08) : 760 - 762
  • [32] Study on Single Event Effect Simulation in T-Shaped Gate Tunneling Field-Effect Transistors
    Chong, Chen
    Liu, Hongxia
    Wang, Shulong
    Chen, Shupeng
    Xie, Haiwu
    MICROMACHINES, 2021, 12 (06)
  • [33] Tunneling Magnetoresistance Properties in Ballistic Spin Field-Effect Transistors
    Jiang, Kai-Ming
    Zhang, Rong
    Yang, Jun
    Yue, Chun-Xiao
    Sun, Zu-Yao
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2010, 57 (08) : 2005 - 2012
  • [34] The Performance of Uniaxially Strained Phosphorene Tunneling Field-Effect Transistors
    Seo, Junbeom
    Jung, Sungwoo
    Shin, Mincheol
    IEEE ELECTRON DEVICE LETTERS, 2017, 38 (08) : 1150 - 1152
  • [35] Thermionic and tunneling transport mechanisms in graphene field-effect transistors
    Ryzhii, Victor
    Ryzhii, Maxim
    Otsuji, Taiichi
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2008, 205 (07): : 1527 - 1533
  • [36] The Impact of a Single Displacement Defect on Tunneling Field-Effect Transistors
    Kim, Jungsik
    Han, Jin-Woo
    Meyyappan, M.
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2020, 67 (11) : 4765 - 4769
  • [37] Experimental Studies of Reliability Issues in Tunneling Field-Effect Transistors
    Jiao, G. F.
    Chen, Z. X.
    Yu, H. Y.
    Huang, X. Y.
    Huang, D. M.
    Singh, N.
    Lo, G. Q.
    Kwong, D. -L.
    Li, Ming-Fu
    IEEE ELECTRON DEVICE LETTERS, 2010, 31 (05) : 396 - 398
  • [38] Hetero-Gate-Dielectric Tunneling Field-Effect Transistors
    Choi, Woo Young
    Lee, Woojun
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2010, 57 (09) : 2317 - 2319
  • [39] A Simple Approach to Quantum Confinement in Tunneling Field-Effect Transistors
    Padilla, J. L.
    Gamiz, F.
    Godoy, A.
    IEEE ELECTRON DEVICE LETTERS, 2012, 33 (10) : 1342 - 1344
  • [40] Are Si/SiGe Tunneling Field-Effect Transistors a Good Idea?
    Koester, S. J.
    Lauer, I.
    Majumdar, A.
    Cai, J.
    Sleight, J.
    Bedell, S.
    Solomon, P.
    Laux, S.
    Chang, L.
    Koswatta, S.
    Haensch, W.
    Tomasini, P.
    Thomas, S.
    SIGE, GE, AND RELATED COMPOUNDS 4: MATERIALS, PROCESSING, AND DEVICES, 2010, 33 (06): : 357 - 361