Statistical Implementations of Agent-Based Demographic Models

被引:14
作者
Hooten, Mevin [1 ]
Wikle, Christopher [2 ]
Schwob, Michael [3 ]
机构
[1] Colorado State Univ, US Geol Survey, Colorado Cooperat Fish & Wildlife Res Unit, Dept Fish Wildlife & Conservat Biol,Dept Stat, Ft Collins, CO 80523 USA
[2] Univ Missouri, Dept Stat, Columbia, MO 65211 USA
[3] Univ Nevada, Dept Math Sci, Las Vegas, NV 89154 USA
基金
美国国家科学基金会;
关键词
Bayesian; emulator; individual-based model; mechanistic model; MCMC; COMPUTER-MODEL; ANIMAL MOVEMENT; MONTE-CARLO; INFERENCE; CALIBRATION; PROTOCOL; OUTPUT;
D O I
10.1111/insr.12399
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A variety of demographic statistical models exist for studying population dynamics when individuals can be tracked over time. In cases where data are missing due to imperfect detection of individuals, the associated measurement error can be accommodated under certain study designs (e.g. those that involve multiple surveys or replication). However, the interaction of the measurement error and the underlying dynamic process can complicate the implementation of statistical agent-based models (ABMs) for population demography. In a Bayesian setting, traditional computational algorithms for fitting hierarchical demographic models can be prohibitively cumbersome to construct. Thus, we discuss a variety of approaches for fitting statistical ABMs to data and demonstrate how to use multi-stage recursive Bayesian computing and statistical emulators to fit models in such a way that alleviates the need to have analytical knowledge of the ABM likelihood. Using two examples, a demographic model for survival and a compartment model for COVID-19, we illustrate statistical procedures for implementing ABMs. The approaches we describe are intuitive and accessible for practitioners and can be parallelised easily for additional computational efficiency.
引用
收藏
页码:441 / 461
页数:21
相关论文
共 65 条
  • [21] Grimm V., 2012, AGENT BASED INDIVIDU
  • [22] A standard protocol for describing individual-based and agent-based models
    Grimm, Volker
    Berger, Uta
    Bastiansen, Finn
    Eliassen, Sigrunn
    Ginot, Vincent
    Giske, Jarl
    Goss-Custard, John
    Grand, Tamara
    Heinz, Simone K.
    Huse, Geir
    Huth, Andreas
    Jepsen, Jane U.
    Jorgensen, Christian
    Mooij, Wolf M.
    Mueller, Birgit
    Pe'er, Guy
    Piou, Cyril
    Railsback, Steven F.
    Robbins, Andrew M.
    Robbins, Martha M.
    Rossmanith, Eva
    Rueger, Nadja
    Strand, Espen
    Souissi, Sami
    Stillman, Richard A.
    Vabo, Rune
    Visser, Ute
    DeAngelis, Donald L.
    [J]. ECOLOGICAL MODELLING, 2006, 198 (1-2) : 115 - 126
  • [23] The ODD protocol A review and first update
    Grimm, Volker
    Berger, Uta
    DeAngelis, Donald L.
    Polhill, J. Gary
    Giske, Jarl
    Railsback, Steven F.
    [J]. ECOLOGICAL MODELLING, 2010, 221 (23) : 2760 - 2768
  • [24] Grzeszczuk R, 1999, ADV NEUR IN, V11, P882
  • [25] Statistical inference for stochastic simulation models - theory and application
    Hartig, Florian
    Calabrese, Justin M.
    Reineking, Bjoern
    Wiegand, Thorsten
    Huth, Andreas
    [J]. ECOLOGY LETTERS, 2011, 14 (08) : 816 - 827
  • [26] Bayesian Emulation and Calibration of a Stochastic Computer Model of Mitochondrial DNA Deletions in Substantia Nigra Neurons
    Henderson, Daniel A.
    Boys, Richard J.
    Krishnan, Kim J.
    Lawless, Concor
    Wilkinson, Darren J.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2009, 104 (485) : 76 - 87
  • [27] The mathematics of infectious diseases
    Hethcote, HW
    [J]. SIAM REVIEW, 2000, 42 (04) : 599 - 653
  • [28] Computer model calibration using high-dimensional output
    Higdon, Dave
    Gattiker, James
    Williams, Brian
    Rightley, Maria
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2008, 103 (482) : 570 - 583
  • [29] Hooten M.B, 2017, ANIMAL MOVEMENT STAT
  • [30] Hooten M. B., 2019, Bringing Bayesian Models to Life