Systemic recruitment of osteoblastic cells in fracture healing

被引:128
作者
Shirley, D
Marsh, D
Jordan, G
McQuaid, S
Li, G
机构
[1] Queens Univ Belfast, Sch Med, Dept Traumat & Orthopaed Surg, Belfast BT9 7JB, Antrim, North Ireland
[2] Royal Victoria Hosp, Dept Pathol, Belfast BT12 6BJ, Antrim, North Ireland
关键词
fracture healing; cisteoblast recruitment; MSCs; circulation; PHK; 26;
D O I
10.1016/j.orthres.2005.01.013
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
We hypothesise that following a bone fracture there is systemic recruitment of bone forming cells to a fracture site. A rabbit ulnar osteotomy model was adapted to trace the movement of osteogenic cells. Bone marrow mesenchymal stem cells from 41 NZW rabbits were isolated, culture-expanded and fluorescently labelled. The labelled cells were either re-implanted into the fracture gap (Group A); into a vein (Group B); or into a remote tibial bone marrow cavity 48 h after the osteotomy (Group C) or 4 weeks before the osteotomy was established (Group D), and a. control group (Group E) had no labelled cells given. To quantify passive leakage of cells to an injury site, inert beads were also co-delivered in Group B. Samples of the fracture callus tissue and various organs were harvested at discrete sacrifice time-points to trace and quantify the labelled cells. At 3 weeks following osteotomy, the number of labelled cells identified in the callus of Group C, was significantly greater than following IV delivery, Group B, and there was no difference in the number of labelled cells in the callus tissues, between Groups C and A, indicating the labelled bone marrow cells were capable of migrating to the fracture sites from the remote bone marrow cavity. Significantly fewer inert beads than labelled cells were identified in Group B callus, suggesting some of the bone-forming cells were actively recruited and selectively chosen to the fracture site, rather than passively leaked into the circulation and to bone injury site. This investigation supports the hypothesis that some osteoblasts involved in fracture healing were systemically mobilised and recruited to the fracture from remote bone marrow sites. (c) 2005 Orthopaedic Research Society. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1013 / 1021
页数:9
相关论文
共 41 条
[1]   Cotransplantation of human stromal cell progenitors into preimmune fetal sheep results in early appearance of human donor cells in circulation and boosts cell levels in bone marrow at later time points after transplantation [J].
Almeida-Porada, G ;
Porada, CD ;
Tran, N ;
Zanjani, ED .
BLOOD, 2000, 95 (11) :3620-3627
[2]   ENGRAFTMENT OF A CLONAL BONE-MARROW STROMAL CELL-LINE INVIVO STIMULATES HEMATOPOIETIC RECOVERY FROM TOTAL-BODY IRRADIATION [J].
ANKLESARIA, P ;
KASE, K ;
GLOWACKI, J ;
HOLLAND, CA ;
SAKAKEENY, MA ;
WRIGHT, JA ;
FITZGERALD, TJ ;
LEE, CY ;
GREENBERGER, JS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (21) :7681-7685
[3]  
ASHTON BA, 1984, CALCIFIED TISSUE INT, V36, P83, DOI 10.1007/BF02405298
[4]  
Aubin Jane E., 1993, P1
[5]  
Aubin JE, 1996, MICROSC RES TECHNIQ, V33, P128, DOI 10.1002/(SICI)1097-0029(19960201)33:2<128::AID-JEMT4>3.0.CO
[6]  
2-P
[7]  
BERESFORD JN, 1989, CLIN ORTHOP RELAT R, P270
[8]   FORMATION OF MINERALIZED NODULES BY BONE DERIVED CELLS-INVITRO - A MODEL OF BONE-FORMATION [J].
BERESFORD, JN ;
GRAVES, SE ;
SMOOTHY, CA .
AMERICAN JOURNAL OF MEDICAL GENETICS, 1993, 45 (02) :163-178
[9]   The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects [J].
Bruder, SP ;
Kraus, KH ;
Goldberg, VM ;
Kadiyala, S .
JOURNAL OF BONE AND JOINT SURGERY-AMERICAN VOLUME, 1998, 80A (07) :985-996
[10]   Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow [J].
Campagnoli, C ;
Roberts, IAG ;
Kumar, S ;
Bennett, PR ;
Bellantuono, I ;
Fisk, NM .
BLOOD, 2001, 98 (08) :2396-2402