Thermal transport in semiconductor nanotubes

被引:4
作者
Malhotra, Abhinav [1 ]
Maldovan, Martin [1 ,2 ]
机构
[1] Georgia Inst Technol, Sch Chem & Biomol Engn, 311 Ferst Dr NW, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA
关键词
Nanotubes; Phonon transport; Semiconductors; Thermal conductivity; Surfaces; CORE-SHELL; CONDUCTIVITY; REDUCTION; NANOWIRES; IMPACTS;
D O I
10.1016/j.ijheatmasstransfer.2018.10.068
中图分类号
O414.1 [热力学];
学科分类号
摘要
Semiconductor nanotubes present an exciting avenue to create very thin one-dimensional nanostructures using currently available growth techniques. Due to their large surface-to-volume ratio, nanotubes allow for an effective control over thermal energy transfer. Here, we study thermal transport in crystalline nanotubes made of silicon and germanium-alloyed-silicon by developing a methodology that accurately accounts for phonon dynamics in these nanostructures. The flexibility of the proposed approach allows considering the two nanotube boundaries as distinct from one another and is used to analyze the impact of nanotube morphology such as shell thicknesses, outer diameters, and surface properties on thermal transport. We also evaluate the frequency and mean-free-path spectra in these nanostructures to elucidate and provide insight on the phonon transport mechanisms in nanotubes. The results of this work advance the understanding of thermal conduction in nanotubes and the abilities to create rationally designed thermal materials, which are critical for obtaining high efficiency of thermoelectrics, photovoltaics, and electronic materials. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:368 / 374
页数:7
相关论文
共 38 条
[1]   Single shot Hugoniot of cyclohexane using a spatially resolved laser driven shock wave [J].
Bolme, C. A. ;
McGrane, S. D. ;
Moore, D. S. ;
Whitley, V. H. ;
Funk, D. J. .
APPLIED PHYSICS LETTERS, 2008, 93 (19)
[2]   Nanoscale thermal transport. II. 2003-2012 [J].
Cahill, David G. ;
Braun, Paul V. ;
Chen, Gang ;
Clarke, David R. ;
Fan, Shanhui ;
Goodson, Kenneth E. ;
Keblinski, Pawel ;
King, William P. ;
Mahan, Gerald D. ;
Majumdar, Arun ;
Maris, Humphrey J. ;
Phillpot, Simon R. ;
Pop, Eric ;
Shi, Li .
APPLIED PHYSICS REVIEWS, 2014, 1 (01)
[3]   Impacts of Atomistic Coating on Thermal Conductivity of Germanium Nanowires [J].
Chen, Jie ;
Zhang, Gang ;
Li, Baowen .
NANO LETTERS, 2012, 12 (06) :2826-2832
[4]   Remarkable Reduction of Thermal Conductivity in Silicon Nanotubes [J].
Chen, Jie ;
Zhang, Gang ;
Li, Baowen .
NANO LETTERS, 2010, 10 (10) :3978-3983
[5]   Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions [J].
Chen, Zhongwei ;
Waje, Mahesh ;
Li, Wenzhen ;
Yan, Yushan .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (22) :4060-4063
[6]   Voltage-tunable circular photogalvanic effect in silicon nanowires [J].
Dhara, Sajal ;
Mele, Eugene J. ;
Agarwal, Ritesh .
SCIENCE, 2015, 349 (6249) :726-729
[7]   Heat transport in silicon from first-principles calculations [J].
Esfarjani, Keivan ;
Chen, Gang ;
Stokes, Harold T. .
PHYSICAL REVIEW B, 2011, 84 (08)
[8]   Communication: Manipulating the singlet-triplet equilibrium in organic biradical materials [J].
Guenaydin-Sen, Oe. ;
Fosso-Tande, J. ;
Chen, P. ;
White, J. L. ;
Allen, T. L. ;
Cherian, J. ;
Tokumoto, T. ;
Lahti, P. M. ;
McGill, S. ;
Harrison, R. J. ;
Musfeldt, J. L. .
JOURNAL OF CHEMICAL PHYSICS, 2011, 135 (24)
[9]   Enhanced thermoelectric performance of rough silicon nanowires [J].
Hochbaum, Allon I. ;
Chen, Renkun ;
Delgado, Raul Diaz ;
Liang, Wenjie ;
Garnett, Erik C. ;
Najarian, Mark ;
Majumdar, Arun ;
Yang, Peidong .
NATURE, 2008, 451 (7175) :163-U5
[10]   Room-temperature ultraviolet nanowire nanolasers [J].
Huang, MH ;
Mao, S ;
Feick, H ;
Yan, HQ ;
Wu, YY ;
Kind, H ;
Weber, E ;
Russo, R ;
Yang, PD .
SCIENCE, 2001, 292 (5523) :1897-1899