Low-temperature perception leading to gene expression and cold tolerance in higher plants

被引:315
作者
Knight, Marc R. [1 ]
Knight, Heather [1 ]
机构
[1] Univ Durham, Sch Biol & Biomed Sci, Durham Ctr Crop Improvement Technol, Durham DH1 3LE, England
基金
英国生物技术与生命科学研究理事会;
关键词
calcium; chilling; freezing; gene expression; low temperature; plants; sensing; transcription; ARABIDOPSIS CIRCADIAN CLOCK; CALCIUM-PERMEABLE CHANNELS; STRESS-REGULATED MICRORNAS; CIS-ACTING ELEMENTS; FREEZING TOLERANCE; ABSCISIC-ACID; TRANSCRIPTION FACTOR; SIGNAL-TRANSDUCTION; RESPONSE PATHWAY; PROTEIN-KINASE;
D O I
10.1111/j.1469-8137.2012.04239.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Plant species exhibit a range of tolerances to low temperatures, and these constitute a major determinant of their geographical distribution and use as crops. When tolerance is insufficient, either chilling or freezing injuries result. A variety of mechanisms are employed to evade the ravages of extreme or sub-optimal temperatures. Many of these involve cold-responsive gene expression and require that the drop in temperature is first sensed by the plant. Despite intensive research over the last 100 yr or longer, we still cannot easily answer the question of how plants sense low temperature. Over recent years, genomic and post-genomic approaches have produced a wealth of information relating to the sequence of events leading from cold perception to appropriate and useful responses. However, there are also crucial and significant gaps in the pathways constructed from these data. We describe the literature pertaining to the current understanding of cold perception, signalling and regulation of low-temperature-responsive gene expression in higher plants, raising some of the key questions that still intrigue plant biologists today and that could be targets for future work. Our review focuses on the control of gene expression in the pathways leading from cold perception to chilling and freezing tolerance.
引用
收藏
页码:737 / 751
页数:15
相关论文
共 161 条
[1]   A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance [J].
Agarwal, Manu ;
Hao, Yujin ;
Kapoor, Avnish ;
Dong, Chun-Hai ;
Fujii, Hiroaki ;
Zheng, Xianwu ;
Zhu, Jian-Kang .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (49) :37636-37645
[2]   Impacts of chilling temperatures on photosynthesis in warm-climate plants [J].
Allen, DJ ;
Ort, DR .
TRENDS IN PLANT SCIENCE, 2001, 6 (01) :36-42
[3]   Purification of a plant mediator from Arabidopsis thaliana identifies PFT1 as the Med25 subunit [J].
Backstrom, Stefan ;
Elfving, Nils ;
Nilsson, Robert ;
Wingsle, Gunnar ;
Bjorklund, Stefan .
MOLECULAR CELL, 2007, 26 (05) :717-729
[4]   The CBF gene family in hexaploid wheat and its relationship to the phylogenetic complexity of cereal CBFs [J].
Badawi, Mohamed ;
Danyluk, Jean ;
Boucho, Barbara ;
Houde, Mario ;
Sarhan, Fathey .
MOLECULAR GENETICS AND GENOMICS, 2007, 277 (05) :533-554
[5]   THE 5'-REGION OF ARABIDOPSIS-THALIANA COR15A HAS CIS-ACTING ELEMENTS THAT CONFER COLD-REGULATED, DROUGHT-REGULATED AND ABA-REGULATED GENE-EXPRESSION [J].
BAKER, SS ;
WILHELM, KS ;
THOMASHOW, MF .
PLANT MOLECULAR BIOLOGY, 1994, 24 (05) :701-713
[6]   Macroscopic domain formation during cooling in the platelet plasma membrane: An issue of low cholesterol content [J].
Bali, Rachna ;
Savino, Laura ;
Ramirez, Diego A. ;
Tsvetkova, Nelly M. ;
Bagatolli, Luis ;
Tablin, Fern ;
Crowe, John H. ;
Leidy, Chad .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2009, 1788 (06) :1229-1237
[7]   CBL-mediated targeting of CIPKs facilitates the decoding of calcium signals emanating from distinct cellular stores [J].
Batistic, Oliver ;
Waadt, Rainer ;
Steinhorst, Leonie ;
Held, Katrin ;
Kudla, Joerg .
PLANT JOURNAL, 2010, 61 (02) :211-222
[8]   Two maize genes encoding ω-3 fatty acid desaturase and their differential expression to temperature [J].
Berberich, T ;
Harada, M ;
Sugawara, K ;
Kodama, H ;
Iba, K ;
Kusano, T .
PLANT MOLECULAR BIOLOGY, 1998, 36 (02) :297-306
[9]   Disruption of the Arabidopsis circadian clock is responsible for extensive variation in the cold-responsive transcriptome [J].
Bieniawska, Zuzanna ;
Espinoza, Carmen ;
Schlereth, Armin ;
Sulpice, Ronan ;
Hincha, Dirk K. ;
Hannah, Matthew A. .
PLANT PHYSIOLOGY, 2008, 147 (01) :263-279
[10]   The sfr6 mutant of Arabidopsis is defective in transcriptional activation via CBF/DREB1 and DREB2 and shows sensitivity to osmotic stress [J].
Boyce, JM ;
Knight, H ;
Deyholos, M ;
Openshaw, MR ;
Galbraith, DW ;
Warren, G ;
Knight, MR .
PLANT JOURNAL, 2003, 34 (04) :395-406