Crystal structure of magnesium silicate hydrates (M-S-H): The relation with 2:1 Mg-Si phyllosilicates

被引:166
作者
Roosz, Cedric [1 ,2 ]
Grangeon, Sylvain [2 ]
Blanc, Philippe [2 ]
Montouillout, Valerie [3 ]
Lothenbach, Barbara [4 ]
Henocq, Pierre [1 ]
Giffaut, Eric [1 ]
Vieillard, Philippe [5 ]
Gaboreau, Stephane [2 ]
机构
[1] Andra Sci Div, F-92298 Chatenay Malabry, France
[2] Bur Rech Geol & Minieres, F-45060 Orleans 2, France
[3] CNRS, CEMHTI, UPR 3079, F-45071 Orleans, France
[4] Empa, Lab Concrete & Construct Chem, CH-8600 Dubendorf, Switzerland
[5] Univ Poitiers, CNRS, IC2MP, Equipe HydrASA,UMR7285, F-86022 Poitiers, France
关键词
MgO; Silica fume; X-ray diffraction; Crystal structure; Hydration products; X-RAY-DIFFRACTION; PH CEMENTITIOUS MATERIALS; RESOLUTION SI-29 NMR; LAYER SILICATES; PARTICLE-SIZE; HYDROTHERMAL SYNTHESIS; ELECTRON-MICROSCOPY; SYNTHETIC TALC; MINERALS; MODEL;
D O I
10.1016/j.cemconres.2015.03.014
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Two magnesium silicate hydrates (M-S-H) with structural magnesium/silicon ratios of 0.57 +/- 0.08 and 1.07 +/- 0.13 were synthesized at room temperature, with one year of synthesis duration. Their structure was clarified by considering results from X-ray diffraction, TEM, Si-29 MAS NMR spectroscopy, TGA, and EPMA. A modeling approach appropriate to defective minerals was used because usual XRD refinement techniques cannot be used in the case of turbostratic samples, where coherency between successive layers is lost. M-S-H with Mg/Si ratio of similar to 0.6 appears to be structurally close to nanocrystalline turbostratic 2:1 Mg-Si phyllosilicates. The increase of the Mg/Si ratio from 0.6 to 1.2 occurs by increasing the occurrence of defects in the silicate plan. The layer-to-layer distance evolves from 9.46 angstrom to 14 angstrom under air-dried and ethylene glycol conditions, respectively. Crystallites have a mean size of 1.5 nm in the ab plane, and 2.4 nm along c*. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:228 / 237
页数:10
相关论文
共 88 条
[1]   UNIT-CELL OF TALC [J].
AKIZUKI, M ;
ZUSSMAN, J .
MINERALOGICAL MAGAZINE, 1978, 42 (321) :107-110
[2]  
ALEXIADES CA, 1967, AM MINERAL, V52, P1855
[3]   THERMAL BEHAVIOR OF GROUND TALC MINERAL [J].
Balek, V. ;
Subrt, J. ;
Perez-Maqueda, L. A. ;
Benes, M. ;
Bountseva, I. M. ;
Beckman, I. N. ;
Perez-Rodriguez, J. L. .
JOURNAL OF MINING AND METALLURGY SECTION B-METALLURGY, 2008, 44 (01) :7-17
[4]  
Bethke C.M., 2014, The Geochemist's Workbench Release 10.0: GWB essentials guide
[5]   Thermodynamics of manganese oxides: Effects of particle size and hydration on oxidation-reduction equilibria among hausmannite, bixbyite, and pyrolusite [J].
Birkner, Nancy ;
Navrotsky, Alexandra .
AMERICAN MINERALOGIST, 2012, 97 (8-9) :1291-1298
[6]   DEWEYLITES, MIXTURES OF POORLY CRYSTALLINE HYDROUS SERPENTINE AND TALC-LIKE MINERALS [J].
BISH, DL ;
BRINDLEY, GW .
MINERALOGICAL MAGAZINE, 1978, 42 (321) :75-79
[7]   Thermoddem: A geochemical database focused on low temperature water/rock interactions and waste materials [J].
Blanc, Ph ;
Lassin, A. ;
Piantone, P. ;
Azaroual, M. ;
Jacquemet, N. ;
Fabbri, A. ;
Gaucher, E. C. .
APPLIED GEOCHEMISTRY, 2012, 27 (10) :2107-2116
[8]   Synthesis and characterisation of magnesium silicate hydrate gels [J].
Brew, DRM ;
Glasser, FP .
CEMENT AND CONCRETE RESEARCH, 2005, 35 (01) :85-98
[9]  
Brindley G.W., 1977, MINERAL MAG, V41, P433
[10]  
Brindley G.W., 1954, AM MINERAL, V40, P239