Application and reactivation of magnetic nanoparticles in Microcystis aeruginosa harvesting

被引:57
作者
Lin, Zhong [1 ,2 ,3 ]
Xu, Yunfeng [4 ]
Zhen, Zhen [1 ]
Fu, Yu [4 ]
Liu, Yueqiao [5 ,6 ]
Li, Wenyan
Luo, Chunling [2 ]
Ding, Aizhong [5 ,6 ]
Zhang, Dayi [3 ]
机构
[1] Guangdong Ocean Univ, Coll Agr, Zhanjiang 524088, Peoples R China
[2] Chinese Acad Sci, Guangzhou Inst Geochem, Guangzhou 510640, Guangdong, Peoples R China
[3] Univ Lancaster, Lancaster Environm Ctr, Lancaster LA1 2YQ, England
[4] Shanghai Univ, Sch Environm & Chem Engn, Shanghai 200444, Peoples R China
[5] Beijing Normal Univ, Coll Water Sci, Beijing 100875, Peoples R China
[6] South China Agr Univ, Coll Nat Resources & Environm, Guangzhou 510642, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Magnetic nanoparticles (MNPs); Microcystis aeruginosa; Cyanobacteria harvesting; Electrostatic attraction; OLEAGINOUS CHLORELLA SP; MICROALGAE; BIOFUELS; FLOCCULANT; SEPARATION; ALGAE; WATER; EFFICIENCY; CONVERSION; BIOMASS;
D O I
10.1016/j.biortech.2015.04.068
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
This study developed a magnetic nanoparticles (MNPs) harvesting and reactivation technique for rapid cyanobacteria Microcystis aeruginosa separation. The harvesting of raw MNPs achieved high efficiency of 99.6% with the MNPs dosage of 0.58 g MNPs/g dry-biomass, but gradually decreased to 59.1% when directly reused 5 times. With extra ultrasonic chloroform: methanol solvent treatment, the MNPs can be effectively reactivated for M. aeruginosa harvesting with 60% efficiency after 5 times reactivation and the separation efficiency kept above 93% with 0.20 g MNPs/g dry-biomass dosage. The cyanobacteria-MNPs complex can be effectively disrupted by ultrasonic chloroform: methanol solvent treatment and the zeta potential was recovered for MNPs electrostatic attraction. The MNPs adsorption followed the Langmuir isotherm, and the maximum adsorption capacity and Langmuir constant was 3.74 g dry-biomass/g and 311.64 L/g respectively. This MNPs reactivation technique can achieve low energy separation and reduce MNPs consumption by 67%, providing potential engineering implementation for cyanobacterial biomass harvesting. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:82 / 88
页数:7
相关论文
共 35 条
[1]   Addressing the challenges for sustainable production of algal biofuels: II. Harvesting and conversion to biofuels [J].
Abdelaziz, Ahmed E. M. ;
Leite, Gustavo B. ;
Hallenbeck, Patrick C. .
ENVIRONMENTAL TECHNOLOGY, 2013, 34 (13-14) :1807-1836
[2]   Harvesting fresh water and marine algae by magnetic separation: Screening of separation parameters and high gradient magnetic filtration [J].
Cerff, Martin ;
Morweiser, Michael ;
Dillschneider, Robert ;
Michel, Aymee ;
Menzel, Katharina ;
Posten, Clemens .
BIORESOURCE TECHNOLOGY, 2012, 118 :289-295
[3]   Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review [J].
Chen, Chun-Yen ;
Yeh, Kuei-Ling ;
Aisyah, Rifka ;
Lee, Duu-Jong ;
Chang, Jo-Shu .
BIORESOURCE TECHNOLOGY, 2011, 102 (01) :71-81
[4]   Fabrication of silica-coated magnetic nanoparticles with highly photoluminescent lanthanide probes [J].
Choi, Jungkweon ;
Kim, Jin Chul ;
Lee, Yong Bok ;
Kim, In Seon ;
Park, Yong Ki ;
Hur, Nam Hwi .
CHEMICAL COMMUNICATIONS, 2007, (16) :1644-1646
[5]   Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts [J].
Christenson, Logan ;
Sims, Ronald .
BIOTECHNOLOGY ADVANCES, 2011, 29 (06) :686-702
[6]   Effects of light and temperature on the photoautotrophic growth and photoinhibition of nitrogen-fixing cyanobacterium Cyanothece sp ATCC 51142 [J].
Dechatiwongse, Pongsathorn ;
Srisamai, Suna ;
Maitland, Geoffrey ;
Hellgardt, Klaus .
ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS, 2014, 5 :103-111
[7]   Interfacing Living Unicellular Algae Cells with Biocompatible Polyelectrolyte-Stabilised Magnetic Nanoparticles [J].
Fakhrullin, Rawil F. ;
Shlykova, Lubov V. ;
Zamaleeva, Alsu I. ;
Nurgaliev, Danis K. ;
Osin, Yuri N. ;
Garcia-Alonso, Javier ;
Paunov, Vesselin N. .
MACROMOLECULAR BIOSCIENCE, 2010, 10 (10) :1257-1264
[8]   Adsorption of Ni2+, Zn2+ and Pb2+ onto dry biomass of Arthrospira (Spirulina) platensis and Chlorella vulgaris. I. Single metal systems [J].
Ferreira, Livia Seno ;
Rodrigues, Mayla Santos ;
Monteiro de Carvalho, Joao Carlos ;
Lodi, Alessandra ;
Finocchio, Elisabetta ;
Perego, Patrizia ;
Converti, Attilio .
CHEMICAL ENGINEERING JOURNAL, 2011, 173 (02) :326-333
[9]   Microalgae flocculation: Impact of flocculant type, algae species and cell concentration [J].
Gerde, Jose A. ;
Yao, Linxing ;
Lio, JunYi ;
Wen, Zhiyou ;
Wang, Tong .
ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS, 2014, 3 :30-35
[10]   Cell surface characterisation of Microcystis aeruginosa and Chlorella vulgaris [J].
Hadjoudja, S. ;
Deluchat, V. ;
Baudu, M. .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2010, 342 (02) :293-299