Reduced graphene oxide and polypyrrole/reduced graphene oxide composite coated stretchable fabric electrodes for supercapacitor application

被引:98
|
作者
Zhao, Chen [1 ]
Shu, Kewei [1 ]
Wang, Caiyun [1 ]
Gambhir, Sanjeev [1 ]
Wallace, Gordon G. [1 ]
机构
[1] Univ Wollongong, ARC Ctr Excellence Elect Sci, Intelligent Polymer Res Inst, Wollongong, NSW 2522, Australia
基金
澳大利亚研究理事会;
关键词
stretchable electrode; graphene; polypyrrole; wearable; supercapacitor; ENERGY-STORAGE; ELECTROCHEMICAL CAPACITORS; FLEXIBLE SUPERCAPACITOR; WEARABLE ELECTRONICS; RAMAN-SPECTROSCOPY; GRAPHITE OXIDE; SOLID-STATE; TEXTILES; FIBERS; PERFORMANCE;
D O I
10.1016/j.electacta.2015.05.019
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The advent of self-powered functional garments has given rise to a demand for stretchable energy storage devices that are amendable to integration into textile structures. The electromaterials (anode, cathode and separator) are expected to sustain a deformation of 3% to 55% associated with body movement. Here, we report a stretchable fabric supercapacitor electrode using commonly available nylon lycra fabric as the substrate and graphene oxide (GO) as a dyestuff. It was prepared via a facile dyeing approach followed by a mild chemical reduction. This reduced graphene oxide (rGO) coated fabric electrode retains conductivity at an applied strain of up to 200%. It delivers a specific capacitance of 12.3 F g(-1) at a scan rate of 5 mV s(-1) in 1.0 M lithium sulfate aqueous solution. The capacitance is significantly increased to 114 F g(-1) with the addition of a chemically synthesized polypyrrole (PPy) coating. This PPy-rGO-fabric electrode demonstrates an improved cycling stability and a higher capacitance at 50% strain when compared to the performance observed with no strain. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:12 / 19
页数:8
相关论文
共 50 条
  • [31] Restacking-Inhibited 3D Reduced Graphene Oxide for High Performance Supercapacitor Electrodes
    Lee, Ji Hoon
    Park, Nokyoung
    Kim, Byung Gon
    Jung, Dae Soo
    Im, Kyuhyun
    Hur, Jaehyun
    Choi, Jang Wook
    ACS NANO, 2013, 7 (10) : 9366 - 9374
  • [32] Facile Synthesis and performance of reduced graphene oxide/cobalt oxide composite for supercapacitor
    Wang, Hongjuan
    Zhou, Dong
    Peng, Feng
    Yu, Hao
    CURRENT TRENDS IN THE DEVELOPMENT OF INDUSTRY, PTS 1 AND 2, 2013, 785-786 : 779 - 782
  • [33] Facile Synthesis of Polypyrrole/Reduced Graphene Oxide Composite Hydrogel for Cr(VI) Removal
    Gao, Song
    Liu, Zhichang
    Yan, Qunshan
    Wei, Pei
    Li, Yang
    Ji, Jiayou
    Li, Liang
    JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS AND MATERIALS, 2021, 31 (09) : 3677 - 3685
  • [34] Fabrication of electrochemically reduced graphene oxide/cobalt oxide composite for charge storage electrodes
    Garcia-Gomez, A.
    Duarte, R. G.
    Eugenio, S.
    Silva, T. M.
    Carmezim, M. J.
    Montemor, M. F.
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2015, 755 : 151 - 157
  • [35] Multidimensional Polyaniline/Reduced Graphene Oxide/Silica Nanocomposite for Efficient Supercapacitor Electrodes
    Kim, Jihoo
    Kim, Minkyu
    Cho, Sunghun
    Yoon, Chang-Min
    Lee, Choonghyeon
    Ryu, Jaehoon
    Jang, Jyongsik
    CHEMNANOMAT, 2016, 2 (03) : 236 - 241
  • [36] Silver-doped reduced graphene oxide/Pani composite synthesis and their supercapacitor applications
    Kerli, Suleyman
    Bhardwaj, Shiva
    Lin, Wang
    Gupta, Ram K.
    JOURNAL OF ORGANOMETALLIC CHEMISTRY, 2023, 995
  • [37] Facile preparation of reduced graphene oxide, polypyrrole, carbon black, and polyvinyl alcohol nanocomposite by electrospinning: a low-cost and sustainable approach for supercapacitor application
    Ates, Murat
    Yuruk, Yeliz
    IONICS, 2021, 27 (06) : 2659 - 2672
  • [38] Morphology control of polyaniline nanostructures on the surface of reduced graphene oxide/cotton fabric composite electrode for high-performance wearable supercapacitor application
    Karami, Zahra
    Youssefi, Mostafa
    Raeissi, Keyvan
    Zhiani, Mohammad
    JOURNAL OF MATERIALS SCIENCE, 2022, 57 (35) : 16776 - 16794
  • [39] Supercapacitors with graphene oxide separators and reduced graphite oxide electrodes
    Shulga, Y. M.
    Baskakov, S. A.
    Baskakova, Y. V.
    Volfkovich, Y. M.
    Shulga, N. Y.
    Skryleva, E. A.
    Parkhomenko, Y. N.
    Belay, K. G.
    Gutsev, G. L.
    Rychagov, A. Y.
    Sosenkin, V. E.
    Kovalev, I. D.
    JOURNAL OF POWER SOURCES, 2015, 279 : 722 - 730
  • [40] Electrochemical and capacitive behavior of reduced graphene oxide from green reduction of graphene oxide by urea for supercapacitor electrodes
    Affi, Jon
    Handayani, Murni
    Anggoro, Muhammad Aulia
    Esmawan, Agung
    Sabarman, Harsojo
    Satriawan, Ardianto
    Shalannanda, Wervyan
    Siburian, Rikson
    Anshori, Isa
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2023, 34 (22)