Sub-Parts Per Million NO2 Chemi-Transistor Sensors Based on Composite Porous Silicon/Gold Nanostructures Prepared by Metal-Assisted Etching

被引:46
作者
Sainato, Michela [1 ]
Strambini, Lucanos Marsilio [1 ]
Rella, Simona [2 ]
Mazzotta, Elisabetta [2 ]
Barillaro, Giuseppe [1 ]
机构
[1] Univ Pisa, Dipartimento Ingn Informaz, I-56122 Pisa, Italy
[2] Univ Salento, Dipartimento Sci & Tecnol Biol & Ambientali, I-73100 Lecce, Italy
关键词
porous silicon; metal nanostructure; composite nanomaterial; chemi-transistor; gas sensing nitrogen dioxide; GOLD NANOPARTICLES; NANOWIRE ARRAYS; FABRICATION; SURFACE; OXIDE; DEPOSITION; DEVICES;
D O I
10.1021/am5089633
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Surface doping of nano/mesostructured materials with metal nanoparticles to promote and optimize chemi-transistor sensing performance represents the most advanced research trend in the field of solid-state chemical sensing. In spite of the promising results emerging from metal-doping of a number of nanostructured semiconductors, its applicability to silicon-based chemi-transistor sensors has been hindered so far by the difficulties in integrating the composite metal-silicon nanostructures using the complementary metal-oxide-semiconductor (CMOS) technology. Here we propose a facile and effective top-down method for the high-yield fabrication of chemi-transistor sensors making use of composite porous silicon/gold nanostructures (cSiAuNs) acting as sensing gate. In particular, we investigate the integration of cSiAuNs synthesized by metal-assisted etching (MAE), using gold nanoparticles (NPs) as catalyst, in solid-state junction-field-effect transistors (JFETs), aimed at the detection of NO2 down to 100 parts per billion (ppb). The chemi-transistor sensors, namely cSiAuJFETs, are CMOS compatible, operate at room temperature, and are reliable, sensitive, and fully recoverable for the detection of NO2 at concentrations between 100 and 500 ppb, up to 48 h of continuous operation.
引用
收藏
页码:7136 / 7145
页数:10
相关论文
共 53 条
[41]   Motility of Metal Nanoparticles in Silicon and Induced Anisotropic Silicon Etching [J].
Peng, Kuiqing ;
Lu, Aijiang ;
Zhang, Ruiqin ;
Lee, Shuit-Tong .
ADVANCED FUNCTIONAL MATERIALS, 2008, 18 (19) :3026-3035
[42]   Silver substrates for surface enhanced Raman scattering: Correlation between nanostructure and Raman scattering enhancement [J].
Santoro, G. ;
Yu, S. ;
Schwartzkopf, M. ;
Zhang, P. ;
Vayalil, Sarathlal Koyiloth ;
Risch, J. F. H. ;
Ruebhausen, M. A. ;
Hernandez, M. ;
Domingo, C. ;
Roth, S. V. .
APPLIED PHYSICS LETTERS, 2014, 104 (24)
[43]   Heteroepitaxial Growth of Gold Nanostructures on Silicon by Galvanic Displacement [J].
Sayed, Sayed Y. ;
Wang, Feng ;
Mallac, Marek ;
Meldrum, Al ;
Egerton, Ray F. ;
Buriak, Jillian M. .
ACS NANO, 2009, 3 (09) :2809-2817
[44]   Fabrication of porous silicon by metal-assisted etching using highly ordered gold nanoparticle arrays [J].
Scheeler, Sebastian P. ;
Ullrich, Simon ;
Kudera, Stefan ;
Pacholski, Claudia .
NANOSCALE RESEARCH LETTERS, 2012, 7 :1-7
[45]   XPS and SIMS analysis of gold silicide grown on a bromine passivated Si(111) substrate [J].
Sundaravel, B ;
Sekar, K ;
Kuri, G ;
Satyam, PV ;
Dev, BN ;
Bera, S ;
Narasimhan, SV ;
Chakraborty, P ;
Caccavale, F .
APPLIED SURFACE SCIENCE, 1999, 137 (1-4) :103-112
[46]   Free charge carriers in mesoporous silicon [J].
Timoshenko, VY ;
Dittrich, T ;
Lysenko, V ;
Lisachenko, MG ;
Koch, F .
PHYSICAL REVIEW B, 2001, 64 (08)
[47]   Organic thin-film transistors as plastic analytical sensors. [J].
Torsi, L ;
Dodabalapur, A .
ANALYTICAL CHEMISTRY, 2005, 77 (19) :380A-387A
[48]   Silicon nanowire solar cells [J].
Tsakalakos, L. ;
Balch, J. ;
Fronheiser, J. ;
Korevaar, B. A. ;
Sulima, O. ;
Rand, J. .
APPLIED PHYSICS LETTERS, 2007, 91 (23)
[49]   Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices [J].
Zhang, DH ;
Liu, ZQ ;
Li, C ;
Tang, T ;
Liu, XL ;
Han, S ;
Lei, B ;
Zhou, CW .
NANO LETTERS, 2004, 4 (10) :1919-1924
[50]   Control of catalytic reactions at the surface of a metal oxide nanowire by manipulating electron density inside it [J].
Zhang, Y ;
Kolmakov, A ;
Chretien, S ;
Metiu, H ;
Moskovits, M .
NANO LETTERS, 2004, 4 (03) :403-407