Real-Time LIDAR-Based Urban Road and Sidewalk Detection for Autonomous Vehicles

被引:16
作者
Horvath, Erno [1 ]
Pozna, Claudiu [1 ,2 ]
Unger, Miklos [1 ]
机构
[1] Szechenyi Istvan Univ, Vehicle Ind Res Ctr, H-9026 Gyor, Hungary
[2] Transylvania Univ Brasov, Dept Product Design & Robot, Brasov 500036, Romania
关键词
autonomous vehicle; open source; LIDAR point cloud; free-space detection; road segmentation; ground-non-ground segmentation; obstacle detection; autonomous vehicles; self-driving; EXTRACTION; MAPS;
D O I
10.3390/s22010194
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Road and sidewalk detection in urban scenarios is a challenging task because of the road imperfections and high sensor data bandwidth. Traditional free space and ground filter algorithms are not sensitive enough for small height differences. Camera-based or sensor-fusion solutions are widely used to classify drivable road from sidewalk or pavement. A LIDAR sensor contains all the necessary information from which the feature extraction can be done. Therefore, this paper focuses on LIDAR-based feature extraction. For road and sidewalk detection, the current paper presents a real-time (20 Hz+) solution. This solution can also be used for local path planning. Sidewalk edge detection is the combination of three algorithms working parallelly. To validate the result, the de facto standard benchmark dataset, KITTI, was used alongside our measurements. The data and the source code to reproduce the results are shared publicly on our GitHub repository.
引用
收藏
页数:17
相关论文
共 43 条
[1]   Ford Multi-AV Seasonal Dataset [J].
Agarwal, Siddharth ;
Vora, Ankit ;
Pandey, Gaurav ;
Williams, Wayne ;
Kourous, Helen ;
McBride, James .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2020, 39 (12) :1367-1376
[2]  
Aijazi AK, 2020, The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, VXLIII, P199, DOI [10.5194/isprs-archives-xliii-b1-2020-199-2020, 10.5194/isprs-archives-XLIII-B1-2020-199-2020]
[3]  
Baek I., 2020, IEEE INT C INTELL TR, DOI DOI 10.1109/itsc45102.2020.9294345
[4]   Towards 3D LiDAR-based semantic scene understanding of 3D point cloud sequences: The SemanticKITTI Dataset [J].
Behley, Jens ;
Garbade, Martin ;
Milioto, Andres ;
Quenzel, Jan ;
Behnke, Sven ;
Gall, Juergen ;
Stachniss, Cyrill .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2021, 40 (8-9) :959-967
[5]   aUToTrack: A Lightweight Object Detection and Tracking System for the SAE AutoDrive Challenge [J].
Burnett, Keenan ;
Samavi, Sepehr ;
Waslander, Steven L. ;
Barfoot, Timothy D. ;
Schoellig, Angela P. .
2019 16TH CONFERENCE ON COMPUTER AND ROBOT VISION (CRV 2019), 2019, :209-216
[6]   nuScenes: A multimodal dataset for autonomous driving [J].
Caesar, Holger ;
Bankiti, Varun ;
Lang, Alex H. ;
Vora, Sourabh ;
Liong, Venice Erin ;
Xu, Qiang ;
Krishnan, Anush ;
Pan, Yu ;
Baldan, Giancarlo ;
Beijbom, Oscar .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :11618-11628
[7]   Enhanced Performance of Fabry-Perot Tunable Filter by Groove Geometry Design of Double Folded Cantilever [J].
Ding, Yifan ;
Hou, Haigang ;
Huang, Qingwei ;
Liu, Junlin ;
Hussain, Shahid ;
Qiao, Guanjun .
JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2020, 15 (06) :687-692
[8]  
Fernandes R, 2014, IEEE VEHICLE POWER
[9]   Vision meets robotics: The KITTI dataset [J].
Geiger, A. ;
Lenz, P. ;
Stiller, C. ;
Urtasun, R. .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2013, 32 (11) :1231-1237
[10]  
Guerrero JA, 2020, I C CONT AUTOMAT ROB, P266, DOI [10.1109/icarcv50220.2020.9305304, 10.1109/ICARCV50220.2020.9305304]