Hausdorff dimension of the multiplicative golden mean shift

被引:8
作者
Kenyon, Richard [1 ]
Peres, Yuval [2 ]
Solomyak, Boris [3 ]
机构
[1] Brown Univ, Dept Math, Providence, RI 02912 USA
[2] Microsoft Res, Redmond, WA 98052 USA
[3] Univ Washington, Dept Math, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.crma.2011.05.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We compute the Hausdorff dimension of the "multiplicative golden mean shift" defined as the set of all reals in [0,1] whose binary expansion (x(k)) satisfies x(k)x(2k) = 0 for all k >= 1, and show that it is smaller than the Minkowski dimension. (C) 2011 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:625 / 628
页数:4
相关论文
共 7 条
[1]  
Bedford T., 1984, PhD Thesis
[2]  
Billingsley P., 1965, ERGODIC THEORY INFOR
[3]  
Falconer K., 1997, Techniques in Fractal Geometry
[4]  
Fan A., ARXIV11053032
[5]  
FURSTENBERG H, 1967, Theory of Computing Systems, DOI [DOI 10.1007/BF01692494, 10.1007/BF01692494]
[6]  
KENYON R, 2011, ARXIV11025136
[7]   THE HAUSDORFF DIMENSION OF GENERAL SIERPINSKI CARPETS [J].
MCMULLEN, C .
NAGOYA MATHEMATICAL JOURNAL, 1984, 96 (DEC) :1-9