Probing the closed-loop model of mRNA translation in living cells

被引:43
作者
Archer, Stuart K. [1 ]
Shirokikh, Nikolay E. [2 ]
Hallwirth, Claus V. [3 ]
Beilharz, Traude H. [4 ]
Preiss, Thomas [1 ,5 ]
机构
[1] Australian Natl Univ, John Curtin Sch Med Res, Genome Biol Dept, Canberra, ACT 2601, Australia
[2] Minist Educ Moscow Reg, Moscow Reg State Inst Humanities & Social Studies, Kolomna, Moscow Region, Russia
[3] Childrens Med Res Inst, Gene Therapy Res Unit, Sydney, NSW, Australia
[4] Monash Univ, Dept Biochem & Mol Biol, Melbourne, Vic 3004, Australia
[5] Victor Chang Cardiac Res Inst, Sydney, NSW, Australia
基金
澳大利亚研究理事会; 澳大利亚国家健康与医学研究理事会;
关键词
cap-poly(A) synergy; eukaryotic translation; mRNA closed-loop; polysomes; ribosomal recycling; POLY(A)-BINDING PROTEIN; GLOBAL ANALYSIS; YEAST GENES; INITIATION; EIF4G; EXPRESSION; MECHANISM; POLYSOMES; BINDING; CAP;
D O I
10.1080/15476286.2015.1017242
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The mRNA closed-loop, formed through interactions between the cap structure, poly(A) tail, eIF4E, eIF4G and PAB, features centrally in models of eukaryotic translation initiation, although direct support for its existence in vivo is not well established. Here, we investigated the closed-loop using a combination of mRNP isolation from rapidly cross-linked cells and high-throughput qPCR. Using the interaction between these factors and the opposing ends of mRNAs as a proxy for the closed-loop, we provide evidence that it is prevalent for eIF4E/4G-bound but unexpectedly sparse for PAB1-bound mRNAs, suggesting it primarily occurs during a distinct phase of polysome assembly. We observed mRNA-specific variation in the extent of closed-loop formation, consistent with a role for polysome topology in the control of gene expression.
引用
收藏
页码:248 / 254
页数:7
相关论文
共 42 条
  • [1] Translation factors promote the formation of two states of the closed-loop mRNP
    Amrani, Nadia
    Ghosh, Shubhendu
    Mangus, David A.
    Jacobson, Allan
    [J]. NATURE, 2008, 453 (7199) : 1276 - U85
  • [2] Genome-wide analysis of mRNA translation profiles in Saccharomyces cerevisiae
    Arava, Y
    Wang, YL
    Storey, JD
    Liu, CL
    Brown, PO
    Herschlag, D
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (07) : 3889 - 3894
  • [3] INCORPORATION OF RAT-LIVER 40-S RIBOSOMAL SUBPARTICLES INTO RABBIT-RETICULOCYTE POLYSOMES
    BONANOUTZEDAKI, SA
    ARNSTEIN, HR
    [J]. EUROPEAN JOURNAL OF BIOCHEMISTRY, 1971, 24 (01): : 156 - +
  • [4] Time-dependent increase in ribosome processivity
    Bonderoff, Jennifer M.
    Lloyd, Richard E.
    [J]. NUCLEIC ACIDS RESEARCH, 2010, 38 (20) : 7054 - 7067
  • [5] Christensen AK, 1999, ANAT REC, V255, P116, DOI 10.1002/(SICI)1097-0185(19990601)255:2<116::AID-AR2>3.0.CO
  • [6] 2-O
  • [7] The glyceraldehyde-3-phosphate dehydrogenase polypeptides encoded by the Saccharomyces cerevisiae TDH1, TDH2 and TDH3 genes are also cell wall proteins
    Delgado, ML
    O'Connor, JE
    Azorín, I
    Renau-Piqueras, J
    Gil, ML
    Gozalbo, D
    [J]. MICROBIOLOGY-SGM, 2001, 147 : 411 - 417
  • [9] From Cis-Regulatory Elements to Complex RNPs and Back
    Gebauer, Fatima
    Preiss, Thomas
    Hentze, Matthias W.
    [J]. COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, 2012, 4 (07): : 1 - 14
  • [10] Global analysis of protein expression in yeast
    Ghaemmaghami, S
    Huh, W
    Bower, K
    Howson, RW
    Belle, A
    Dephoure, N
    O'Shea, EK
    Weissman, JS
    [J]. NATURE, 2003, 425 (6959) : 737 - 741