The realization of non-transitive Novikov algebras

被引:26
作者
Bai, CM [1 ]
Meng, DJ
机构
[1] Nankai Inst Math, Div Theoret Phys, Tianjin 300071, Peoples R China
[2] Liu Hui Ctr Appl Math, Tianjin 300071, Peoples R China
[3] Nankai Univ, Dept Math, Tianjin 300071, Peoples R China
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2001年 / 34卷 / 33期
关键词
D O I
10.1088/0305-4470/34/33/308
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Novikov algebras were introduced in connection with hydrodynamic-type Poisson brackets and Hamiltonian operators in the formal variational calculus. We have given a kind of realization of transitive Novikov algebras through the Novikov algebras given by S Gelfand and their compatible infinitesimal deformations in Bai and Meng (2001 J. Phys. A: Math. Gen. 34 3363-72). As a further and continuous study, we extend this realization theory to the nontransitive Novikov algebras in the paper. In two and three dimensions, we find that all non-transitive Novikov algebras also can be realized as the Novikov algebras given by S Gelfand and their compatible infinitesimal deformations. Moreover, they have simpler formulae.
引用
收藏
页码:6435 / 6442
页数:8
相关论文
共 22 条
[1]   The structures of bi-symmetric algebras and their sub-adjacent Lie algebras [J].
Bai, CM ;
Meng, DJ .
COMMUNICATIONS IN ALGEBRA, 2000, 28 (06) :2717-2734
[2]   On the realization of transitive Novikov algebras [J].
Bai, CM ;
Meng, DJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (16) :3363-3372
[3]   The classification of Novikov algebras in low dimensions [J].
Bai, CM ;
Meng, DJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (08) :1581-1594
[4]  
Balinsky A.A., 1985, SOV MATH DOKL, V32, P228
[5]   Simple left-symmetric algebras with solvable Lie algebra [J].
Burde D. .
manuscripta mathematica, 1998, 95 (3) :397-411
[6]  
Dubrovin B., 1983, SOV MATH DOKL, V270, P665
[7]  
Dubrovin B A., 1984, Soviet Math. Dokl., V30, P651
[8]  
Filippov VT., 1989, MAT ZAMETKI, V45, P101
[9]  
Gel'fand I., 1979, FUNCT ANAL APPL, V13, P13, DOI 10.1007/BF01078363
[10]  
Gelfand I.M., 1975, Russian Mathematical Surveys, V30, P77, DOI DOI 10.1070/RM1975V030N05ABEH001522