Finite geometries and diffractive orbits in isospectral billiards

被引:8
作者
Giraud, O [1 ]
机构
[1] Univ Toulouse 3, Phys Theor Lab, CNRS, UMR 5152, F-31062 Toulouse, France
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2005年 / 38卷 / 27期
关键词
D O I
10.1088/0305-4470/38/27/L01
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Several examples of pairs of isospectral planar domains have been produced in the two-dimensional Euclidean space by various methods. We show that all these examples rely on-the symmetry between points and blocks in finite projective spaces; from the properties of these spaces, one can derive a relation between Green's functions as well as a relation between diffractive orbits in isospectral billiards.
引用
收藏
页码:L477 / L483
页数:7
相关论文
共 15 条
[1]  
[Anonymous], INTERNAT MATH RES NO
[2]  
BERARD P, 1989, ASTERISQUE, P127
[3]  
BONISOLI A, 2000, NOTES FINITE GEOMETR
[4]   CONSTRUCTING ISOSPECTRAL MANIFOLDS [J].
BROOKS, R .
AMERICAN MATHEMATICAL MONTHLY, 1988, 95 (09) :823-839
[5]   DRUMS THAT SOUND THE SAME [J].
CHAPMAN, SJ .
AMERICAN MATHEMATICAL MONTHLY, 1995, 102 (02) :124-138
[6]  
Dinitz J, 1992, CONT DESIGN THEORY C, P1
[7]   Diffractive orbits in isospectral billiards [J].
Giraud, O .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (07) :2751-2764
[8]   ISOSPECTRAL PLANE DOMAINS AND SURFACES VIA RIEMANNIAN ORBIFOLDS [J].
GORDON, C ;
WEBB, D ;
WOLPERT, S .
INVENTIONES MATHEMATICAE, 1992, 110 (01) :1-22
[9]  
GORDON C, 1986, CONT MATH, V51, P63, DOI DOI 10.1090/C0NM/051/848934.MR848934
[10]  
Hirschfeld JWP., 1979, PROJECTIVE GEOMETRIE