Using Complete Monotonicity to Deduce Local Error Estimates for Discretisations of a Multi-Term Time-Fractional Diffusion Equation

被引:15
作者
Chen, Hu [2 ]
Stynes, Martin [1 ]
机构
[1] Beijing Computat Sci Res Ctr, Appl & Computat Math Div, Beijing 100193, Peoples R China
[2] Ocean Univ China, Sch Math Sci, Qingdao 266100, Peoples R China
基金
中国国家自然科学基金;
关键词
Complete Monotonicity; Multi-Term Time-Fractional; Local Error Estimates; L1; Scheme; Grunwald-Letnikov Scheme; GRADED MESHES;
D O I
10.1515/cmam-2021-0053
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Time-fractional initial-boundary problems of parabolic type are considered. Previously, global error bounds for computed numerical solutions to such problems have been provided by Liao et al. (SIAM J. Numer. Anal. 2018, 2019) and Stynes et al. (SIAM J. Numer. Anal. 2017). In the present work we show how the concept of complete monotonicity can be combined with these older analyses to derive local error bounds (i.e., error bounds that are sharper than global bounds when one is not close to the initial time t = 0). Furthermore, we show that the error analyses of the above papers are essentially the same - their key stability parameters, which seem superficially different from each other, become identical after a simple rescaling. Our new approach is used to bound the global and local errors in the numerical solution of a multi-term time-fractional diffusion equation, using the L1 scheme for the temporal discretisation of each fractional derivative. These error bounds are alpha-robust. Numerical results show they are sharp.
引用
收藏
页码:15 / 29
页数:15
相关论文
共 16 条
[1]  
Canuto C., 2007, SCIENTIF COMPUT, DOI 10.1007/978-3-540-30726-6
[2]   Blow-up of error estimates in time-fractional initial-boundary value problems [J].
Chen, Hu ;
Stynes, Martin .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2021, 41 (02) :974-997
[3]   An analysis of the Grunwald-Letnikov scheme for initial-value problems with weakly singular solutions [J].
Chen, Hu ;
Holland, Finbarr ;
Stynes, Martin .
APPLIED NUMERICAL MATHEMATICS, 2019, 139 :52-61
[4]  
Gautschi Walter, 1959, Journal of Mathematics and Physics, V38, P77, DOI [10.1002/sapm195938177, DOI 10.1002/SAPM195938177]
[5]   Superconvergence of a Finite Element Method for the Multi-term Time-Fractional Diffusion Problem [J].
Huang, Chaobao ;
Stynes, Martin .
JOURNAL OF SCIENTIFIC COMPUTING, 2020, 82 (01)
[6]   Numerical methods for time-fractional evolution equations with nonsmooth data: A concise overview [J].
Jin, Bangti ;
Lazarov, Raytcho ;
Zhou, Zhi .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 346 :332-358
[7]   AN ANALYSIS OF GALERKIN PROPER ORTHOGONAL DECOMPOSITION FOR SUBDIFFUSION [J].
Jin, Bangti ;
Zhou, Zhi .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (01) :89-113
[8]   ERROR ANALYSIS FOR A FRACTIONAL-DERIVATIVE PARABOLIC PROBLEM ON QUASI-GRADED MESHES USING BARRIER FUNCTIONS [J].
Kopteva, Natalia ;
Meng, Xiangyun .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (02) :1217-1238
[9]   A NOTE ON DECONVOLUTION WITH COMPLETELY MONOTONE SEQUENCES AND DISCRETE FRACTIONAL CALCULUS [J].
Li, Lei ;
Liu, Jian-Guo .
QUARTERLY OF APPLIED MATHEMATICS, 2018, 76 (01) :189-198
[10]   A DISCRETE GRONWALL INEQUALITY WITH APPLICATIONS TO NUMERICAL SCHEMES FOR SUBDIFFUSION PROBLEMS [J].
Liao, Hong-Lin ;
McLean, William ;
Zhang, Jiwei .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (01) :218-237