The Complexity of Permutive Cellular Automata

被引:0
|
作者
Ban, Jung-Chao [1 ,2 ]
Chang, Chih-Hung [3 ]
Chen, Ting-Ju [3 ]
Lin, Mei-Shao [3 ]
机构
[1] Natl Dong Hwa Univ, Dept Appl Math, Hualien 97063, Taiwan
[2] Natl Taiwan Univ, Taida Inst Math Sci, Taipei 10617, Taiwan
[3] Natl Cent Univ, Dept Math, Chungli 32054, Taiwan
关键词
Cellular automata; permutive; equilibrium measure; phase transition; Parry measure; snap-back repeller; chaos; REACTION-DIFFUSION EQUATIONS; EXCITABLE MEDIA; CHAOS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper studies one-dimensional permutive cellular automata in two aspects: Ergodic and topological behavior. Through investigating measure-theoretic entropy and topological pressure, we show taht Parry measure is the unique equilibrium measure whenever the potential function depends on one coordinate. In other words, permutive cellular automata exhibit no phase transition. Furthermore, the existence of snap-back repellers for a cellular automaton infers Li-Yorke chaos and bipermutive cellular automata guarantee the subsistence of snap-back repellers.
引用
收藏
页码:385 / 397
页数:13
相关论文
共 50 条