Utilizing Machine Learning for Image Quality Assessment for Reflectance Confocal Microscopy

被引:23
作者
Kose, Kivanc [1 ]
Bozkurt, Alican [2 ]
Alessi-Fox, Christi [3 ]
Brooks, Dana H. [2 ]
Dy, Jennifer G. [2 ]
Rajadhyaksha, Milind [1 ]
Gill, Melissa [4 ,5 ]
机构
[1] Mem Sloan Kettering Canc Ctr, Dermatol Serv, 16 E 60th St, New York, NY 10022 USA
[2] Northeastern Univ, Elect & Comp Engn, Boston, MA 02115 USA
[3] Caliber Imaging & Diagnost Inc, Rochester, NY USA
[4] Suny Downstate Med Ctr, Dept Pathol, Brooklyn, NY 11203 USA
[5] SkinMed Res & Diagnost PLLC, Dobbs Ferry, NY USA
基金
美国国家卫生研究院;
关键词
BASAL-CELL CARCINOMA; IN-VIVO; TEXTURE CLASSIFICATION; SKIN-CANCER; DELINEATION; DIAGNOSIS; MELANOMA; STACKS;
D O I
10.1016/j.jid.2019.10.018
中图分类号
R75 [皮肤病学与性病学];
学科分类号
100206 ;
摘要
In vivo reflectance confocal microscopy (RCM) enables clinicians to examine lesions' morphological and cytological information in epidermal and dermal layers while reducing the need for biopsies. As RCM is being adopted more widely, the workflow is expanding from real-time diagnosis at the bedside to include a capture, store, and forward model with image interpretation and diagnosis occurring offsite, similar to radiology. As the patient may no longer be present at the time of image interpretation, quality assurance is key during image acquisition. Herein, we introduce a quality assurance process by means of automatically quantifying diagnostically uninformative areas within the lesional area by using RCM and coregistered dermoscopy images together. We trained and validated a pixel-level segmentation model on 117 RCM mosaics collected by international collaborators. The model delineates diagnostically uninformative areas with 82% sensitivity and 93% specificity. We further tested the model on a separate set of 372 coregistered RCM-dermoscopic image pairs and illustrate how the results of the RCM-only model can be improved via a multimodal (RCM thorn dermoscopy) approach, which can help quantify the uninformative regions within the lesional area. Our data suggest that machine learningebased automatic quantification offers a feasible objective quality control measure for RCM imaging.
引用
收藏
页码:1214 / 1222
页数:9
相关论文
共 31 条
[1]   Impact of in vivo reflectance confocal microscopy on the number needed to treat melanoma in doubtful lesions [J].
Alarcon, I. ;
Carrera, C. ;
Palou, J. ;
Alos, L. ;
Malvehy, J. ;
Puig, S. .
BRITISH JOURNAL OF DERMATOLOGY, 2014, 170 (04) :802-808
[2]  
[Anonymous], ARXIV171200192
[3]  
[Anonymous], ARXIV200101005
[4]  
[Anonymous], 2015, Tech. Rep.
[5]   Clinical Indications for Use of Reflectance Confocal Microscopy for Skin Cancer Diagnosis [J].
Borsari, Stefania ;
Pampena, Riccardo ;
Lallas, Aimilios ;
Kyrgidis, Athanassios ;
Moscarella, Elvira ;
Benati, Elisa ;
Raucci, Margherita ;
Pellacani, Giovanni ;
Zalaudek, Iris ;
Argenziano, Giuseppe ;
Longo, Caterina .
JAMA DERMATOLOGY, 2016, 152 (10) :1093-1098
[6]   Unsupervised delineation of stratum corneum using reflectance confocal microscopy and spectral clustering [J].
Bozkurt, A. ;
Kose, K. ;
Alessi-Fox, C. ;
Dy, J. G. ;
Brooks, D. H. ;
Rajadhyaksha, M. .
SKIN RESEARCH AND TECHNOLOGY, 2017, 23 (02) :176-185
[7]   A Multiresolution Convolutional Neural Network with Partial Label Training for Annotating Reflectance Confocal Microscopy Images of Skin [J].
Bozkurt, Alican ;
Kose, Kivanc ;
Alessi-Fox, Christi ;
Gill, Melissa ;
Dy, Jennifer ;
Brooks, Dana ;
Rajadhyaksha, Milind .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT II, 2018, 11071 :292-299
[8]  
CIBC, 2016, SEG3D VOL IM SEGM VI
[9]   First experiences using reflectance confocal microscopy on equivocal skin lesions in Queensland [J].
Curchin, Claudia E. S. ;
Wurm, Elisabeth M. T. ;
Lambie, Duncan L. J. ;
Longo, Caterina ;
Pellacani, Giovanni ;
Soyer, H. Peter .
AUSTRALASIAN JOURNAL OF DERMATOLOGY, 2011, 52 (02) :89-97
[10]   Dermatologist-level classification of skin cancer with deep neural networks [J].
Esteva, Andre ;
Kuprel, Brett ;
Novoa, Roberto A. ;
Ko, Justin ;
Swetter, Susan M. ;
Blau, Helen M. ;
Thrun, Sebastian .
NATURE, 2017, 542 (7639) :115-+