Transforming quantum states between reference frames

被引:5
作者
Ben-Benjamin, J. S. [1 ,2 ]
Scully, M. O. [1 ,2 ,3 ,4 ]
Unruh, W. G. [1 ,2 ,5 ]
机构
[1] Texas A&M Univ, Inst Quantum Sci & Engn, College Stn, TX 77843 USA
[2] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA
[3] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[4] Baylor Univ, Dept Phys, Waco, TX 76706 USA
[5] Univ British Columbia, Dept Phys, Vancouver, BC V6T 2A6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
general relativity; quantum field theory; quantum phase space distributions; Wigner Weyl distribution; reference frames; Unruh acceleration radiation; coordinate transformation; WIGNER;
D O I
10.1088/1402-4896/ab8c16
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the 1970s, Fulling, Davis, and Unruh have shown that a quantum mechanical statemustbe described differently in different reference frames; otherwise, quantum mechanics would contain contradictions. We present a simple method for transforming any quantum state between the Minkowski and Rindler reference frames. We show that a Wigner-like distribution, commonly used in quantum optics, is useful for treating this problem. To illustrate our method, we transform the Minkowski vacuum and number states into Rindler space, and transform the Rindler vacuum into Minkowski space, as examples. Our method could be generalized to other cases as well.
引用
收藏
页数:10
相关论文
共 25 条
[11]   The particle problem in the general theory of relativity [J].
Einstein, A ;
Rosen, N .
PHYSICAL REVIEW, 1935, 48 (01) :73-77
[12]   Statistics of dressed modes in a thermal state [J].
Englert, BG ;
Fulling, SA ;
Pilloff, MD .
OPTICS COMMUNICATIONS, 2002, 208 (1-3) :139-144
[13]   ON THE OPERATOR BASES UNDERLYING WIGNER, KIRKWOOD AND GLAUBER PHASE-SPACE FUNCTIONS [J].
ENGLERT, BG .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (06) :625-640
[14]   NONUNIQUENESS OF CANONICAL FIELD QUANTIZATION IN RIEMANNIAN SPACE-TIME [J].
FULLING, SA .
PHYSICAL REVIEW D, 1973, 7 (10) :2850-2862
[15]   DISTRIBUTION-FUNCTIONS IN PHYSICS - FUNDAMENTALS [J].
HILLERY, M ;
OCONNELL, RF ;
SCULLY, MO ;
WIGNER, EP .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1984, 106 (03) :121-167
[16]  
Rindler W, 1980, ESSENTIAL RELATIVITY
[17]   WIGNER FUNCTION AS EXPECTATION VALUE OF A PARITY OPERATOR [J].
ROYER, A .
PHYSICAL REVIEW A, 1977, 15 (02) :449-450
[18]  
Schleich W., 2015, Quantum Optics in Phase Space
[19]  
Scully M., 1996, Quantum Optics
[20]   Quantum optics approach to radiation from atoms falling into a black hole [J].
Scully, Marlan O. ;
Fulling, Stephen ;
Lee, David M. ;
Page, Don N. ;
Schleich, Wolfgang P. ;
Svidzinsky, Anatoly A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (32) :8131-8136