Scalable synthesis of Li2GeO3/expanded graphite as a high-performance anode for Li-ion batteries

被引:13
|
作者
Li, Fangkun [1 ]
Wang, Xinyi [1 ]
He, Weixin [1 ]
Xu, Xijun [1 ]
Liu, Zhengbo [1 ]
Shen, Jiadong [1 ]
Hu, Yunfei [2 ]
Chen, Zhonghua [3 ]
Liu, Jun [1 ]
机构
[1] South China Univ Technol, Sch Mat Sci & Engn, Guangdong Prov Key Lab Adv Energy Storage Mat, Guangzhou 510641, Peoples R China
[2] Shenzhen Technol Univ, Coll New Mat & New Energies, Shenzhen 518118, Peoples R China
[3] Shenzhen FBTech Elect Ltd, Fenghuang Blvd, Shenzhen 518111, Peoples R China
基金
中国国家自然科学基金;
关键词
Li2GeO3; Expanded graphite; Coated structure; Anode; Lithium-ion batteries; HIGH-CAPACITY; CONVERSION ANODE; LITHIUM; CARBON; CATHODE;
D O I
10.1016/j.jallcom.2021.162893
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A simple, economical, and easily scalable high-energy ball-milling method for the synthesis of Li2GeO3/expanded graphite (LGO/EG) as a high-performance anode for lithium-ion batteries is reported. The LGO/EG exhibits a unique architecture with expanded graphite (EG) uniformly coating Li2GeO3 (LGO) particles, which effectively inhibited the agglomeration of LGO particles. The LGO/7 wt%EG anode delivers a discharge capacity of 800.6 mA h g(-1) at 5.0 A g(-1), with an outstanding capacity retention of 75.9% after 300 cycles at 1.0 A g(-1), which is 8.3% higher than that of the uncoated LGO anode. This is attributed to the introduction of EG which improves the electronic conductivity of LGO, and the uniformly coated EG can effectively inhibit the volume change of LGO particles during the charging-discharging process. As a result, LGO/EG has outstanding high-rate performance and long-term cycle stability. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Lithium Germanate (Li2GeO3): A High-Performance Anode Material for Lithium-Ion Batteries
    Rahman, Md Mokhlesur
    Sultana, Irin
    Yang, Tianyu
    Chen, Zhiqiang
    Sharma, Neeraj
    Glushenkov, Alexey M.
    Chen, Ying
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (52) : 16059 - 16063
  • [2] Petrochemical-waste-derived high-performance anode material for Li-ion batteries
    Ko, Seunghyun
    Lee, Chul Wee
    Irm, Ji Sun
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2016, 36 : 125 - 131
  • [3] High-performance silicon/graphite anode prepared by CVD using SiCl4 as precursor for Li-ion batteries
    Hu, Mengfei
    Wu, Houzheng
    Zhang, Guo-Jun
    CHEMICAL PHYSICS LETTERS, 2023, 833
  • [4] One-Step In Situ Synthesis of GeO2/Graphene Composites Anode for High-Performance Li-Ion Batteries
    Wei, Wei
    Guo, Lin
    PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 2013, 30 (08) : 658 - 661
  • [5] Ni3Si2-Si nanowires on Ni foam as a high-performance anode of Li-ion batteries
    Du, Ning
    Fan, Xin
    Yu, Jingxue
    Zhang, Hui
    Yang, Deren
    ELECTROCHEMISTRY COMMUNICATIONS, 2011, 13 (12) : 1443 - 1446
  • [6] Advanced Nanostructured Cathode and Anode Materials for High-Performance Li-Ion Batteries
    Liu, Jun
    Wan, Yanling
    Liu, Wei
    Wang, Jinbing
    Zhou, Yichun
    Xue, Dongfeng
    ENERGY AND ENVIRONMENT FOCUS, 2012, 1 (01) : 19 - 38
  • [7] ?-MnS nanoparticles in-situ anchored in 3D macroporous honeycomb carbon as high-performance anode for Li-ion batteries
    Zhu, S. Y.
    Yuan, Y. F.
    Du, P. F.
    Zhu, M.
    Chen, Y. B.
    Guo, S. Y.
    APPLIED SURFACE SCIENCE, 2023, 616
  • [8] Soil as an inexhaustible and high-performance anode material for Li-ion batteries
    Hu, Xiaofei
    Zhang, Kai
    Cong, Liang
    Cheng, Fangyi
    Chen, Jun
    CHEMICAL COMMUNICATIONS, 2015, 51 (87) : 15827 - 15830
  • [9] Graphite from Dead Li-Ion Batteries: A "Powerful" Additive for Fabrication of High-Performance Li-Ion Capacitors
    Jyothilakshmi, Shaji
    Meshram, Pratima
    Abhilash
    Lee, Yun-Sung
    Aravindan, Vanchiappan
    ADVANCED MATERIALS TECHNOLOGIES, 2024, 9 (07)
  • [10] Advanced Li-Rich Cathode Collaborated with Graphite/Silicon Anode for High Performance Li-Ion Batteries in Half and Full Cells
    Huang, Yanling
    Hou, Xianhua
    Fan, Xiaoying
    Ma, Shaomeng
    Hu, Shejun
    Lam, Kwok-ho
    ELECTROCHIMICA ACTA, 2015, 182 : 1175 - 1187