In order to tackle the problem of information overload and effective recommendation based on users' preference, need, and interest a number of research contributions has been made for the development of recommender systems. However, certain challenges, such as data sparsity, profiling attack, and black-box recommendation still exist and hamper their prediction accuracy. In this paper, we propose a hybrid approach to predict user ratings by incorporating both trust and context of the users in traditional recommender systems using collaborative filtering method. The similarity between two users is computed using both trust value and context-based similarity. The trust value is based on three trust statements - rating deviation, emotions, and reviews helpfulness. On the other hand, context-based similarity is based on four contextual features - companion, place, day, and priority. The performance of the proposed trust- and context-based hybrid approach is analyzed using mean absolute error and root mean square error on a real dataset generated from two movie data sources (IMDB and Rotten Tomatoes), and it performs significantly better in comparison to some of the standard baseline methods. The rating prediction using only trust statements gives better results in comparison to other collaborative filtering approaches, such as user-based and item-based filtering approaches. Similarly, context-based collaborative filtering approach also outperforms standard collaborative filtering approaches. In addition, rating prediction using both trust- and context-based features performs better in comparison to only trust-based or context-based approaches.