REACTION-DIFFUSION PROBLEMS ON TIME-DEPENDENT RIEMANNIAN MANIFOLDS: STABILITY OF PERIODIC SOLUTIONS

被引:0
作者
Bandle, C. [1 ]
Monticelli, D. D. [2 ]
Punzo, F. [2 ]
机构
[1] Univ Basel, CH-4001 Basel, Switzerland
[2] Politecn Milan, I-20133 Milan, Italy
关键词
reaction-diffusion equations; stability; instability; Riemannian manifolds; Ricci curvature; EQUATION;
D O I
10.1137/17M1161865
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the stability of time-periodic solutions of semilinear parabolic problems with Neumann boundary conditions, posed on a domain of a Riemannian manifold. On the domain we consider metrics that vary periodically in time. The discussion is based on the principal eigenvalue of periodic parabolic operators. The study is related to biological models on the effect of growth and curvature on pattern formation. Metric properties, for instance, the Ricci curvature, play a crucial role.
引用
收藏
页码:6082 / 6099
页数:18
相关论文
共 50 条
[31]   Stability of time-dependent diffusion semigroups and kernels [J].
Zheng, WA .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 1999, 15 (04) :575-586
[32]   Stability of Time-Dependent Diffusion Semigroups and Kernels [J].
Weian ZhengDepartment of MathematicsUniversity of CaliforniaIrvineCAU S ADepartment of StatisticsEast China Normal UniversityShanghai PRChina Emailwzhengmathuciedu .
Acta Mathematica Sinica(English Series), 1999, 15 (04) :575-586
[33]   Stability of spatially periodic pulse patterns in a class of singularly perturbed reaction-diffusion equations [J].
van der Ploeg, H ;
Doelman, A .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2005, 54 (05) :1219-1301
[34]   Blow-up versus global existence of solutions for reaction–diffusion equations on classes of Riemannian manifolds [J].
Gabriele Grillo ;
Giulia Meglioli ;
Fabio Punzo .
Annali di Matematica Pura ed Applicata (1923 -), 2023, 202 :1255-1270
[35]   Periodic solutions to impulsive stochastic reaction-diffusion neural networks with delays [J].
Yao, Qi ;
Wang, Linshan ;
Wang, Yangfan .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 78
[36]   A description of the global attractor for a class of reaction-diffusion systems with periodic solutions [J].
Büger, M .
MATHEMATISCHE NACHRICHTEN, 2001, 222 :31-78
[37]   Higher-order time-stepping methods for time-dependent reaction-diffusion equations arising in biology [J].
Owolabi, Kolade M. ;
Patidar, Kailash C. .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 240 :30-50
[38]   Symmetry solutions for reaction-diffusion equations with spatially dependent diffusivity [J].
Bradshaw-Hajek, B. H. ;
Moitsheki, R. J. .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 254 :30-38
[39]   Multidimensional stability of V-shaped traveling fronts in time periodic bistable reaction-diffusion equations [J].
Sheng, Wei-Jie .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 72 (06) :1714-1726
[40]   On Stable Solutions of Boundary Reaction-Diffusion Equations and Applications to Nonlocal Problems with Neumann Data [J].
Dipierro, Serena ;
Soave, Nicola ;
Valdinoci, Enrico .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2018, 67 (01) :429-469