Asymptotic behavior of a nonlinear hyperbolic heat equation with memory

被引:39
作者
Giorgi, C [1 ]
Pata, V [1 ]
机构
[1] Univ Brescia, Dipartimento Matemat, I-25123 Brescia, Italy
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2001年 / 8卷 / 02期
关键词
hyperbolic heat equation; memory kernel; existence and uniqueness; uniform absorbing set;
D O I
10.1007/PL00001443
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate the asymptotic behavior, as time tends to infinity, of the solutions of an integro-differential equation describing the heat flow in a rigid heat conductor with memory. This model arises matching the energy balance, in presence of a nonlinear time-dependent heat source, with a linearized heat flux law of the Gurtin-Pipkin type. Existence and uniqueness of solutions for the corresponding semilinear system (subject to initial history and Dirichlet boundary conditions) is provided. Moreover, under proper assumptions on the heat flux memory kernel and the magnitude of nonlinearity, the existence of a uniform absorbing set is achieved.
引用
收藏
页码:157 / 171
页数:15
相关论文
共 16 条
[1]  
[Anonymous], 1988, APPL MATH SCI
[2]  
[Anonymous], ADV METHODS DIFFER E
[3]  
Babin A.V., 1992, ATTRACTORS EVOLUTION
[4]  
DAFERMOS CM, 1970, ARCH RATION MECH AN, V37, P297
[5]   On rigid linear heat conductors with memory [J].
Fabrizio, M ;
Gentili, G ;
Reynolds, DW .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1998, 36 (7-8) :765-782
[6]  
GHIDAGLIA JM, 1987, J MATH PURE APPL, V66, P273
[7]   Uniform attractors for a non-autonomous semilinear heat equation with memory [J].
Giorgi, C ;
Pata, V ;
Marzocchi, A .
QUARTERLY OF APPLIED MATHEMATICS, 2000, 58 (04) :661-683
[8]  
Giorgi C., 2001, Commun. Appl. Anal, V5, P121
[9]   Asymptotic behavior of a semilinear problem in heat conduction with memory [J].
Giorgi, Claudio ;
Pata, Vittorino ;
Marzocchi, Alfredo .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1998, 5 (03) :333-354
[10]  
GRABMULLER H., 1976, P ROY SOC EDINB A, V76, P119