On uncertainty quantification in vibroacoustic problems

被引:0
作者
Sepahvand, K. [1 ]
Marburg, S. [1 ]
机构
[1] Univ Bundeswehr, Inst Mech, Munich, Germany
来源
EURODYN 2014: IX INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS | 2014年
关键词
Uncertainty quantification; Stochastic FEM; Vibroacoustic; non-intrusive method; GENERALIZED POLYNOMIAL CHAOS; SENSITIVITY-ANALYSIS;
D O I
暂无
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In this paper, we employ non-sampling techniques for numerical simulation of vibroacoustic problems including uncertain material parameters. The uncertain parameters are represented using the Karhunen-Loeve expansion and structural stochastic responses are approximated by means of generalized polynomial chaos expansion with deterministic unknown coefficients. The non-intrusive stochastic FEM is implemented calculate the unknown coefficients by generating samples of parameters for a deterministic FEM code. The numerical procedure has this potential to use commercial FEM codes as black box to discretize the spatial deterministic space and easy to apply in complex industrial problems. Efficiency of the method in comparison with the experimental results is studied.
引用
收藏
页码:3259 / 3263
页数:5
相关论文
共 22 条
[1]   Structural/acoustic sensitivity analysis of a structure subjected to stochastic excitation [J].
Allen, MJ ;
Sbragio, R ;
Vlahopoulos, N .
AIAA JOURNAL, 2001, 39 (07) :1270-1279
[2]  
ANSYS, 2012, ANS FIN EL SOFTW
[3]   Sensitivity analysis of coupled structural-acoustic systems subjected to stochastic excitation [J].
Chen, Gang ;
Zhao, Guozhong ;
Chen, Biaosong .
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2009, 39 (01) :105-113
[4]  
Cicirello A., 2012, J SOUND VIB IN PRESS, P1
[5]   Structural-acoustic modeling of automotive vehicles in presence of uncertainties and experimental identification and validation [J].
Durand, Jean-Francois ;
Soize, Christian ;
Gagliardini, Laurent .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2008, 124 (03) :1513-1525
[6]  
Elishakoff I., 2003, Finite Element Methods for Structrues with Large Stochastic Variations
[7]  
Kleiber M., 1992, The Stochastic Finite Element Method: Basic Perturbation Technique and Computer Implementation
[8]   Adaptive polynomial chaos expansions applied to statistics of extremes in nonlinear random vibration [J].
Li, R ;
Ghanem, R .
PROBABILISTIC ENGINEERING MECHANICS, 1998, 13 (02) :125-136
[9]   STRUCTURAL RESPONSES TO ARBITRARILY COHERENT STATIONARY RANDOM EXCITATIONS [J].
LIN, JH ;
ZHANG, WS ;
LI, JJ .
COMPUTERS & STRUCTURES, 1994, 50 (05) :629-633
[10]   Generalized polynomial chaos and random oscillators [J].
Lucor, D ;
Su, CH ;
Karniadakis, GE .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2004, 60 (03) :571-596