Opinion mining and emotion recognition applied to learning environments

被引:59
作者
Barron Estrada, Maria Lucia [1 ]
Zatarain Cabada, Ramon [1 ]
Oramas Bustillos, Raul [2 ]
Graff, Mario [3 ]
机构
[1] Tecnol Nacl Mexico, Inst Tecnol Culiacan, Juan de Dios Batiz 310 Pte, Culiacan 80220, Sinaloa, Mexico
[2] Univ Autonoma Occidente, Blvd Lola Beltran, Culiacan 80220, Sinaloa, Mexico
[3] INFOTEC Aguascalientes Circuito, Tecnopolo Sur 112, Aguascalientes 20313, Aguascalientes, Mexico
关键词
Opinion mining; Sentiment analysis; Deep learning; Evolutionary algorithms; Machine learning; Intelligent learning environments; SENTIMENT ANALYSIS;
D O I
10.1016/j.eswa.2020.113265
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a comparison among several sentiment analysis classifiers using three different techniques - machine learning, deep learning, and an evolutionary approach called EvoMSA - for the classification of educational opinions in an Intelligent Learning Environment called ILE-Java. To make this comparison, we develop two corpora of expressions into the programming languages domain, which reflect the emotional state of students regarding teachers, exams, homework, and academic projects, among others. A corpus called sentiTEXT has polarity (positive and negative) labels, while a corpus called eduSERE has positive and negative learning-centered emotions (engaged, excited, bored, and frustrated) labels. From the experiments carried out with the three techniques, we conclude that the evolutionary algorithm (EvoMSA) generated the best results with an accuracy of 93% for the corpus sentiTEXT, and 84% for the corpus eduSERE. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:12
相关论文
共 55 条
  • [21] El-Halees A, 2011, COMM COM INF SC, V180, P107
  • [22] Felbo Bjarke, 2017, USING MILLIONS EMOJI, P1615
  • [23] Graff M., 2018, CORR
  • [24] Semantic Genetic Programming for Sentiment Analysis
    Graff, Mario
    Tellez, Eric S.
    Jair Escalante, Hugo
    Miranda-Jimenez, Sabino
    [J]. NEO 2015, 2017, 663 : 43 - 65
  • [25] Hinojosa J.A., 2016, AFFECTIVE NORMS 875, P272, DOI [10.3758/s13428-015-0572-5, DOI 10.3758/S13428-015-0572-5]
  • [26] Term-weighting learning via genetic programming for text classification
    Jair Escalante, Hugo
    Garcia-Limon, Mauricio A.
    Morales-Reyes, Alicia
    Graff, Mario
    Montes-y-Gomez, Manuel
    Morales, Eduardo F.
    Martinez-Carranza, Jose
    [J]. KNOWLEDGE-BASED SYSTEMS, 2015, 83 : 176 - 189
  • [27] A Convolutional Neural Network for Modelling Sentences
    Kalchbrenner, Nal
    Grefenstette, Edward
    Blunsom, Phil
    [J]. PROCEEDINGS OF THE 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1, 2014, : 655 - 665
  • [28] Kechaou Z., 2011, 2011 IEEE Global Engineering Education Conference (EDUCON), P1032, DOI 10.1109/EDUCON.2011.5773275
  • [29] ALGA: Adaptive lexicon learning using genetic algorithm for sentiment analysis of microblogs
    Keshavarz, Hamidreza
    Abadeh, Mohammad Saniee
    [J]. KNOWLEDGE-BASED SYSTEMS, 2017, 122 : 1 - 16
  • [30] Kim Yoon, 2014, Encyclopediaof Microfluidics and Nanofluidics, P1746, DOI DOI 10.3115/V1/D14-1181