Thermo-selenized stainless steel as an efficient oxygen evolution electrode for water splitting and CO2 electrolysis in real water matrices

被引:9
作者
Han, Man Ho [1 ,2 ]
Ko, Young-Jin [1 ]
Lee, Seung Yeon [3 ]
Lim, Chulwan [1 ,2 ]
Lee, Woong Hee [1 ]
Pin, Min Wook [4 ]
Koh, Jai Hyun [1 ]
Kim, Jihyun [2 ]
Kim, Woong [3 ]
Min, Byoung Koun [1 ,5 ]
Oh, Hyung-Suk [1 ,6 ,7 ]
机构
[1] Korea Inst Sci & Technol KIST, Clean Energy Res Ctr, Hwarang Ro 14 Gil 5, Seoul 02792, South Korea
[2] Korea Univ, Dept Chem & Biol Engn, Anamdong 5 Ga, Seoul 02841, South Korea
[3] Korea Univ, Dept Mat Sci & Engn, Anamdong 5 Ga, Seoul 02841, South Korea
[4] Korea Inst Ind Technol KITECH, Adv Proc & Mat R&D Grp, 156 Gaetbeol Ro, Incheon 21999, South Korea
[5] Korea Univ, KUKIST Grad Sch Energy & Environm, 145 Anam Ro, Seoul 02841, South Korea
[6] Korea Univ Sci & Technol, KIST Sch, Div Energy & Environm Technol, Seoul 02792, South Korea
[7] Kyung Hee Univ, KHU KIST Dept Converging Sci & Technol, Seoul 02447, South Korea
基金
新加坡国家研究基金会;
关键词
Stainless steel; Selenization; Oxygen evolution reaction (OER); Water splitting; CO2; electrolysis; SURFACE OXIDATION; ELECTROCATALYSTS; REDUCTION; CATALYSTS; MN; NI; (OXY)HYDROXIDE; NANOSHEETS; HYDROXIDE; OXIDES;
D O I
10.1016/j.jpowsour.2021.230953
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Although stainless steel is a promising candidate for oxygen evolution reaction (OER) electrodes, chalcogenization is typically necessary to avoid surface passivation. Herein, we modify the surface of SUS304 by selenization under mild conditions. The optimal selenization temperature (500 degrees C) is determined by analyzing the surface morphology and elemental distribution. The electrode composition and the role of Se in improving OER activity are clarified using X-ray photoelectron spectroscopy depth profiling. The electrode selenized at 500 degrees C is rich in oxygen vacancies and had a high Ni content after electrochemical pre-activation. Moreover, the overpotential is only 284.3 mV at 10 mA cm(-2) and no potential degradation occurred over 160 h, indicating excellent stability under alkaline conditions. Further, high stability is achieved during CO2 reduction in a real water matrix. These results provide new insights for modifying commercial stainless-steel electrodes to maximize OER activity for alkaline water splitting and neutral CO2 electrolysis.
引用
收藏
页数:12
相关论文
共 57 条
  • [1] High-Performance Oxygen Evolution Anode from Stainless Steel via Controlled Surface Oxidation and Cr Removal
    Anantharaj, Sengeni
    Venkatesh, Murugadoss
    Salunke, Ashish S.
    Simha, Tangella V. S. V.
    Prabu, Vijayakumar
    Kundu, Subrata
    [J]. ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2017, 5 (11): : 10072 - 10083
  • [2] Cost-Effective Alkaline Water Electrolysis Based on Nitrogen- and Phosphorus-Doped Self-Supportive Electrocatalysts
    Balogun, Muhammad-Sadeeq
    Qiu, Weitao
    Huang, Yongchao
    Yang, Hao
    Xu, Ruimei
    Zhao, Wenxia
    Li, Gao-Ren
    Ji, Hongbing
    Tong, Yexiang
    [J]. ADVANCED MATERIALS, 2017, 29 (34)
  • [3] Ultrathin Spinel-Structured Nanosheets Rich in Oxygen Deficiencies for Enhanced Electrocatalytic Water Oxidation
    Bao, Jian
    Zhang, Xiaodong
    Fan, Bo
    Zhang, Jiajia
    Zhou, Min
    Yang, Wenlong
    Hu, Xin
    Wang, Hui
    Pan, Bicai
    Xie, Yi
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (25) : 7399 - 7404
  • [4] DEVELOPMENT OF GRAIN-BOUNDARY CHROMIUM DEPLETION IN TYPE-304 AND TYPE-316 STAINLESS-STEELS
    BRUEMMER, SM
    CHARLOT, LA
    [J]. SCRIPTA METALLURGICA, 1986, 20 (07): : 1019 - 1024
  • [5] Oxygen Evolution Reaction Electrocatalysis on Transition Metal Oxides and (Oxy)hydroxides: Activity Trends and Design Principles
    Burke, Michaela S.
    Enman, Lisa J.
    Batchellor, Adam S.
    Zou, Shihui
    Boettcher, Shannon W.
    [J]. CHEMISTRY OF MATERIALS, 2015, 27 (22) : 7549 - 7558
  • [6] Cobalt-Iron (Oxy)hydroxide Oxygen Evolution Electrocatalysts: The Role of Structure and Composition on Activity, Stability, and Mechanism
    Burke, Michaela S.
    Kast, Matthew G.
    Trotochaud, Lena
    Smith, Adam M.
    Boettcher, Shannon W.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (10) : 3638 - 3648
  • [7] Activity of pure and transition metal-modified CoOOH for the oxygen evolution reaction in an alkaline medium
    Chen, Zhu
    Kronawitter, Coleman X.
    Yeh, Yao-Wen
    Yang, Xiaofang
    Zhao, Peng
    Yao, Nan
    Koel, Bruce E.
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (02) : 842 - 850
  • [8] A class of transition metal-oxide@MnOx core-shell structured oxygen electrocatalysts for reversible O2 reduction and evolution reactions
    Cheng, Yi
    Dou, Shuo
    Saunders, Martin
    Zhang, Jin
    Pan, Jian
    Wang, Shuangyin
    Jiang, San Ping
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (36) : 13881 - 13889
  • [9] High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria
    Chueh, William C.
    Falter, Christoph
    Abbott, Mandy
    Scipio, Danien
    Furler, Philipp
    Haile, Sossina M.
    Steinfeld, Aldo
    [J]. SCIENCE, 2010, 330 (6012) : 1797 - 1801
  • [10] A unique amorphous cobalt-phosphide-boride bifunctional electrocatalyst for enhanced alkaline water-splitting
    Chunduri, A.
    Gupta, S.
    Bapat, O.
    Bhide, A.
    Fernandes, R.
    Patel, M. K.
    Bambole, V
    Miotello, A.
    Patel, N.
    [J]. APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 259