Characterization of Ba1.0Sr1.0FeO4+δ cathode on La0.9Sr0.1Ga0.8Mg0.2O3-δ electrolyte for intermediate temperature solid oxide fuel cells

被引:8
|
作者
Yin, Yanping [1 ]
Liu, Bangwu [2 ]
Qi, Junjie [2 ]
Gu, Yousong [2 ]
Liao, Qingliang [2 ]
Qin, Zi [2 ]
Li, Zhanqiang [1 ]
Wang, Qinyu [2 ]
Zhang, Yue [1 ,2 ]
机构
[1] Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China
[2] Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 100083, Peoples R China
关键词
Solid oxide fuel cells; Cathode materials; Mixed ionic-electronic conductor; Electrochemical performance;
D O I
10.1016/j.jpowsour.2011.03.019
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ba1.0Sr1.0FeO4+delta (BSFO) with A(2)BO(4) structure as a cathode material for intermediate temperature solid oxide fuel cells (IT-SOFCs) is synthesized through an ethylene diamine tetraacetic acid (EDTA)-citrate process, and characterized by X-ray diffraction. Field emission scanning electron microscopy shows that BSFO cathode is well attached to the La0.9Sr0.1Ga0.8Mg0.2O3-delta (LSGM) electrolyte. The electrical conductivity measured by DC four-probe method increases as the temperature increases. A linear relationship between In(sigma T) and 1000/T indicates that the conducting behavior obeys the small polaron conductivity mechanism. Electrochemical performance of BSFO cathode on LSGM electrolyte is investigated in the temperature range from 500 degrees C to 800 degrees C. The results indicate that oxygen adsorption/dissociation process dominates cathodic reaction. Furthermore, the polarization resistance of BSFO cathode decreases with increasing temperature, and declines to 1.42 Omega cm(2) at 800 degrees C. These results show that BSFO can be a promising cathode material used on LSGM electrolyte for IT-SOFCs. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:6238 / 6241
页数:4
相关论文
共 50 条
  • [1] Synthesis and characterization of La0.9Sr0.1Ga0.8Mg0.2O3-δ electrolyte for intermediate temperature solid oxide fuel cells (ITSOFC)
    M. Kumar
    A. Samson Nesaraj
    I. Arul Raj
    R. Pattabiraman
    Ionics, 2004, 10 : 93 - 98
  • [2] Synthesis and characterization of La0.9Sr0.1Ga0.8Mg0.2O3-δ electrolyte for Intermediate Temperature Solid Oxide Fuel Cells (ITSOFC)
    Kumar, M
    Nesaraj, AS
    Raj, IA
    Pattabiraman, R
    IONICS, 2004, 10 (1-2) : 93 - 98
  • [3] La0.8Sr1.2CoO4+δ-CGO composite as cathode on La0.9Sr0.1Ga0.8Mg0.2O3-δ electrolyte for intermediate temperature solid oxide fuel cells
    Zhou, Jun
    Chen, Gang
    Wu, Kai
    Cheng, Yonghong
    JOURNAL OF POWER SOURCES, 2013, 232 : 332 - 337
  • [4] Preparation and performance of large-area La0.9Sr0.1Ga0.8Mg0.2O3-δ electrolyte for intermediate temperature solid oxide fuel cell
    Zhu, Xiao-dong
    Zhang, Nai-qing
    Wu, Li-jun
    Sun, Ke-ning
    Yuan, Yi-xing
    JOURNAL OF POWER SOURCES, 2010, 195 (22) : 7583 - 7586
  • [5] Characteristics of Ba0.5Sr0.5Co0.8Fe0.2O3-δ-La0.9Sr0.1Ga0.8Mg0.2O3-δ composite cathode for solid oxide fuel cell
    Liu, Bangwu
    Zhang, Yue
    Zhang, Limin
    JOURNAL OF POWER SOURCES, 2008, 175 (01) : 189 - 195
  • [6] La0.9Sr0.1Ga0.8Mg0.2O3-δ-La0.6Sr0.4Co0.2Fe0.8O3-θ composite cathodes for intermediate-temperature solid oxide fuel cells
    Lin, Yuanbo
    Barnett, Scott A.
    SOLID STATE IONICS, 2008, 179 (11-12) : 420 - 427
  • [7] Electrochemical evaluation of La0.6Sr0.4Co0.8Fe0.2O3-δ-La0.9Sr0.1Ga0.8Mg0.2O3-δ composite cathodes for La0.9Sr0.1Ga0.8Mg0.2O3-δ electrolyte SOFCs
    Guo, Weimin
    Liu, Jiang
    Jin, Chao
    Gao, Hongbo
    Zhang, Yaohui
    JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 473 (1-2) : 43 - 47
  • [8] Synthesis and characterization of La0.9Sr0.1Ga0.8Mg0.2O3-δ intermediate-temperature electrolyte using conventional solid state reaction
    Li, Minxia
    Zhang, Yaohui
    An, Maozhong
    Lu, Zhe
    Huang, Xiqiang
    Xiao, Juncheng
    Wei, Bo
    Zhu, Xingbao
    Su, Wenhui
    JOURNAL OF POWER SOURCES, 2012, 218 : 233 - 236
  • [9] Ionic Conductivity of Chemically Synthesized La0.9Sr0.1Ga0.8Mg0.2O3-δ Solid Electrolyte
    Reis, S. L.
    Muccillo, E. N. S.
    ELECTROCERAMICS VI, 2014, 975 : 81 - 85
  • [10] Proton conduction in La0.9Sr0.1Ga0.8Mg0.2O3-α
    Ma, Guilin
    Zhang, Feng
    Zhu, Jianli
    Meng, Guangyao
    CHEMISTRY OF MATERIALS, 2006, 18 (25) : 6006 - 6011