Epithelial to mesenchymal transition in renal fibrogenesis: Pathologic significance, molecular mechanism, and therapeutic intervention

被引:952
作者
Liu, YH [1 ]
机构
[1] Univ Pittsburgh, Sch Med, Dept Pathol, Div Cellular & Mol Pathol, Pittsburgh, PA 15261 USA
来源
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY | 2004年 / 15卷 / 01期
关键词
D O I
10.1097/01.ASN.0000106015.29070.E7
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Mature tubular epithelial cells in adult kidney can undergo epithelial-to-mesenchymal transition (EMT), a phenotypic conversion that is fundamentally linked to the pathogenesis of renal interstitial fibrosis. Emerging evidence indicates that a large proportion of interstitial fibroblasts are actually originated from tubular epithelial cells via EMT in diseased kidney. Moreover, selective blockade of EMT in a mouse genetic model dramatically reduces fibrotic lesions after obstructive injury, underscoring a definite importance of EMT in renal fibrogenesis. Tubular EMT is proposed as an orchestrated, highly regulated process that consists of four key steps: (1) loss of epithelial cell adhesion; (2) de novo alpha-smooth muscle actin expression and actin reorganization; (3) disruption of tubular basement membrane; and (4) enhanced cell migration and invasion. Of the many factors that regulate EMT in different ways, transforming growth factor-beta1 is the most potent inducer that is capable of initiating and completing the entire EMT course, whereas hepatocyte growth factor and bone morphogenetic protein-7 act as EMT inhibitors both in vitro and in vivo. Multiple intracellular signaling pathways have been implicated in mediating EMT, in which Smad/integrin-linked kinase may play a central role. This article attempts to provide a comprehensive review of recent advances on understanding the pathologic significance, molecular mechanism, and therapeutic intervention of EMT in the setting of chronic renal fibrosis.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 104 条
[11]   The transcription factor Snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression [J].
Cano, A ;
Pérez-Moreno, MA ;
Rodrigo, I ;
Locascio, A ;
Blanco, MJ ;
del Barrio, MG ;
Portillo, F ;
Nieto, MA .
NATURE CELL BIOLOGY, 2000, 2 (02) :76-83
[12]   Gelatinase A (MMP-2) is necessary and sufficient for renal tubular cell epithelial-mesenchymal transformation [J].
Cheng, SF ;
Lovett, DH .
AMERICAN JOURNAL OF PATHOLOGY, 2003, 162 (06) :1937-1949
[13]   The integrin-linked kinase regulates the cyclin D1 gene through glycogen synthase kinase 3β and cAMP-responsive element-binding protein-dependent pathways [J].
D'Amico, M ;
Hulit, J ;
Amanatullah, DF ;
Zafonte, BT ;
Albanese, C ;
Bouzahzah, B ;
Fu, MF ;
Augenlicht, LH ;
Donehower, LA ;
Takemaru, KI ;
Moon, RT ;
Davis, R ;
Lisanti, MP ;
Shtutman, M ;
Zhurinsky, J ;
Ben-Ze'ev, A ;
Troussard, AA ;
Dedhar, S ;
Pestell, RG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (42) :32649-32657
[14]   Transforming growth factor-β1 potentiates renal tubular epithelial cell death by a mechanism independent of smad signaling [J].
Dai, CS ;
Yang, JW ;
Liu, YH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (14) :12537-12545
[15]   Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase [J].
Delcommenne, M ;
Tan, C ;
Gray, V ;
Rue, L ;
Woodgett, J ;
Dedhar, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (19) :11211-11216
[16]   Ca2+-independent smooth muscle contraction -: A novel function for integrin-linked kinase [J].
Deng, JT ;
Van Lierop, JE ;
Sutherland, C ;
Walsh, MP .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (19) :16365-16373
[17]   Molecular basis of renal fibrosis [J].
Eddy, AA .
PEDIATRIC NEPHROLOGY, 2000, 15 (3-4) :290-301
[18]  
Eddy AA, 1996, J AM SOC NEPHROL, V7, P2495
[19]   Plasticity of kidney cells: Role in kidney remodeling and scarring [J].
El Nahas, AM .
KIDNEY INTERNATIONAL, 2003, 64 (05) :1553-1563
[20]   Transforming growth factor-β regulates tubular epithelial-myofibroblast transdifferentiation in vitro [J].
Fan, JM ;
Ng, YY ;
Hill, PA ;
Nikolic-Paterson, DJ ;
Mu, W ;
Atkins, RC ;
Lan, HY .
KIDNEY INTERNATIONAL, 1999, 56 (04) :1455-1467