Accelerating the Discovery of New DP Steel Using Machine Learning-Based Multiscale Materials Simulations

被引:9
|
作者
Chehade, Abdallah A. [1 ]
Belgasam, Tarek M. [2 ,3 ]
Ayoub, Georges [1 ]
Zbib, Hussein M. [4 ]
机构
[1] Univ Michigan, Dept Ind & Mfg Syst Engn, Dearborn, MI 48128 USA
[2] Honda R&D Amer Inc, Mat Res Div, Raymond, OH USA
[3] Univ Benghazi, Fac Engn, Mech Engn Dept, Benghazi, Libya
[4] Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA
关键词
DUAL-PHASE STEELS; REPRESENTATIVE VOLUME ELEMENT; GAUSSIAN PROCESS; DEFORMATION-BEHAVIOR; MECHANICAL-BEHAVIOR; MARTENSITE; MICROSTRUCTURE; STRENGTH; STRESS; FAILURE;
D O I
10.1007/s11661-020-05764-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In recent years, the use of dual-phase (DP) steels by the automotive industry has been growing rapidly, motivated by government policies prompting the production of fuel-efficient vehicles. While it is of high interest for the transportation industry to design and discover different grades of DP steels exhibiting desirable mechanical properties, this requires exploring a large number of DP steel microstructure combinations. Expensive trial-and-error-based experimentations and multiscale materials simulations are two conventional approaches that have been widely adopted in the field of materials design and discovery. Yet, it is challenging to use such approaches for fast materials design and discovery when considering the computational and cost limitations, as it is computationally infeasible and intractable to use multiscale materials models to characterize the mechanical properties of millions of different microstructures. To address this major limitation in material design, a Gaussian process is developed to accelerate the discovery of the mechanical properties of different DP steels by evolving the microstructure parameters using a limited number of numerical simulations (using a multiscale materials model). A Gaussian process is a machine learning technique that is trained to find nontrivial correlations between a set of inputs (microstructure properties) to predict a desired output (mechanical property). The proposed Gaussian process not only accelerates the prediction of the desired mechanical properties of millions of multiscale materials simulations but also offers uncertainty quantification around its predictions. These merits make the Gaussian process a very reliable, robust, and practical solution for material design exploration. The proposed framework combining multiscale simulations and the Gaussian process is used to discover the microstructural design of DP steel with maximum tensile toughness. The results showed the effectiveness and robustness of the proposed method in comparison to benchmark methods.
引用
收藏
页码:3268 / 3279
页数:12
相关论文
共 50 条
  • [11] Unsupervised machine learning classification for accelerating FE2 multiscale fracture simulations
    Chaouch, Souhail
    Yvonnet, Julien
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 432
  • [12] Accelerating materials property predictions using machine learning
    Ghanshyam Pilania
    Chenchen Wang
    Xun Jiang
    Sanguthevar Rajasekaran
    Ramamurthy Ramprasad
    Scientific Reports, 3
  • [13] Accelerating materials property predictions using machine learning
    Pilania, Ghanshyam
    Wang, Chenchen
    Jiang, Xun
    Rajasekaran, Sanguthevar
    Ramprasad, Ramamurthy
    SCIENTIFIC REPORTS, 2013, 3
  • [14] Accelerating Machine Learning-Based Memristor Compact Modeling Using Sparse Gaussian Process
    Shintani, Yuta
    Inoue, Michiko
    Shintani, Michihiro
    2024 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION, DATE, 2024,
  • [15] Materials discovery and design using machine learning
    Liu, Yue
    Zhao, Tianlu
    Ju, Wangwei
    Shi, Siqi
    JOURNAL OF MATERIOMICS, 2017, 3 (03) : 159 - 177
  • [16] Interpretable Multiscale Machine Learning-Based Parameterizations of Convection for ICON
    Heuer, Helge
    Schwabe, Mierk
    Gentine, Pierre
    Giorgetta, Marco A.
    Eyring, Veronika
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2024, 16 (08)
  • [17] Machine Learning-Based Supervised Classification of Point Clouds Using Multiscale Geometric Features
    Atik, Muhammed Enes
    Duran, Zaide
    Seker, Dursun Zafer
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2021, 10 (03)
  • [18] Accelerating Materials Discovery through Machine Learning: Predicting Crystallographic Symmetry Groups
    Alghofaili, Yousef A. A.
    Alghadeer, Mohammed
    Alsaui, Abdulmohsen A. A.
    Alqahtani, Saad M. M.
    Alharbi, Fahhad H. H.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (33): : 16645 - 16653
  • [19] A State-of-the-Art Review on Machine Learning-Based Multiscale Modeling, Simulation, Homogenization and Design of Materials
    Dana Bishara
    Yuxi Xie
    Wing Kam Liu
    Shaofan Li
    Archives of Computational Methods in Engineering, 2023, 30 : 191 - 222
  • [20] A State-of-the-Art Review on Machine Learning-Based Multiscale Modeling, Simulation, Homogenization and Design of Materials
    Bishara, Dana
    Xie, Yuxi
    Liu, Wing Kam
    Li, Shaofan
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2023, 30 (01) : 191 - 222