Tuning the Electronic Structure of CoO Nanowire Arrays by N-Doping for Efficient Hydrogen Evolution in Alkaline Solutions

被引:6
作者
Cao, Maoqi [1 ]
Li, Xiaofeng [1 ]
Xiang, Dingding [1 ]
Wu, Dawang [1 ]
Sun, Sailan [1 ]
Dai, Hongjing [1 ]
Luo, Jun [1 ]
Zou, Hongtao [1 ]
机构
[1] Qiannan Normal Univ Nationalities, Sch Chem & Chem Engn, Duyun 558000, Peoples R China
关键词
CoO nanowires; N-doping; water dissociation; KOH; HER; MOS2; NANOSHEETS; RECENT PROGRESS; ELECTROCATALYSTS; NANOPARTICLES; CATALYSTS; GRAPHENE; CARBIDE; SURFACE; CARBON;
D O I
10.3390/catal11101237
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrochemical hydrogen evolution reactions (HER) have drawn tremendous interest for the scalable and sustainable conversion of renewable electricity to clear hydrogen fuel. However, the sluggish kinetics of the water dissociation step severely restricts the high production of hydrogen in alkaline media. Tuning the electronic structure by doping is an effective method to boost water dissociation in alkaline solutions. In this study, N-doped CoO nanowire arrays (N-CoO) were designed and prepared using a simple method. X-ray diffraction (XRD), element mappings and X-ray photoelectron spectroscopy (XPS) demonstrated that N was successfully incorporated into the lattice of CoO. The XPS of Co 2p and O 1s suggested that the electronic structure of CoO was obviously modulated after the incorporation of N, which improved the adsorption and activation of water molecules. The energy barriers obtained from the Arrhenius relationship of the current density at different temperatures indicated that the N-CoO nanowire arrays accelerated the water dissociation in the HER process. As a result, the N-CoO nanowire arrays showed an excellent performance of HER in alkaline condition. At a current density of 10 mA cm(-1), the N-CoO nanowire arrays needed only a 123 mV potential, which was much lower than that of CoO (285 mV). This simple design strategy provides some new inspiration to promote water dissociation for HER in alkaline solutions at the atomic level.
引用
收藏
页数:11
相关论文
共 54 条
[1]   The long-run and short-run influence of environmental pollution, energy consumption, and economic activities on health quality in emerging countries [J].
Anser, Muhammad Khalid ;
Hanif, Imran ;
Xuan Vinh Vo ;
Alharthi, Majed .
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2020, 27 (26) :32518-32532
[2]   Mortality and greenhouse gas impacts of biomass and petroleum energy futures in Africa [J].
Bailis, R ;
Ezzati, M ;
Kammen, DM .
SCIENCE, 2005, 308 (5718) :98-103
[3]   Ir nanoparticles with ultrahigh dispersion as oxygen evolution reaction (OER) catalysts: synthesis and activity benchmarking [J].
Bizzotto, Francesco ;
Quinson, Jonathan ;
Zana, Alessandro ;
Kirkensgaard, Jacob J. K. ;
Dworzak, Alexandra ;
Oezaslan, Mehtap ;
Arenz, Matthias .
CATALYSIS SCIENCE & TECHNOLOGY, 2019, 9 (22) :6345-6356
[4]   Microporous metal phosphonate-based N-doped graphene oxide for efficient electrocatalyst for water oxidation [J].
Cao, Maoqi ;
Sun, Sailan ;
Long, Chengmei ;
Luo, Jun ;
Wu, Dawang .
MATERIALS LETTERS, 2021, 284
[5]   Nesting Co3Mo Binary Alloy Nanoparticles onto Molybdenum Oxide Nanosheet Arrays for Superior Hydrogen Evolution Reaction [J].
Chen, Jiyi ;
Ge, Yuancai ;
Feng, Qianyi ;
Zhuang, Peiyuan ;
Chu, Hang ;
Cao, Yudong ;
Smith, William R. ;
Dong, Pei ;
Ye, Mingxin ;
Shen, Jianfeng .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (09) :9002-9010
[6]   Tailoring the d-Band Centers Enables Co4N Nanosheets To Be Highly Active for Hydrogen Evolution Catalysis [J].
Chen, Zhiyan ;
Song, Yao ;
Cai, Jinyan ;
Zheng, Xusheng ;
Han, Dongdong ;
Wu, Yishang ;
Zang, Yipeng ;
Niu, Shuwen ;
Liu, Yun ;
Zhu, Junfa ;
Liu, Xiaojing ;
Wang, Gongming .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (18) :5076-5080
[7]   Ultrathin WS2 Nanoflakes as a High-Performance Electrocatalyst for the Hydrogen Evolution Reaction [J].
Cheng, Liang ;
Huang, Wenjing ;
Gong, Qiufang ;
Liu, Changhai ;
Liu, Zhuang ;
Li, Yanguang ;
Dai, Hongjie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (30) :7860-7863
[8]   Enhancing the Alkaline Hydrogen Evolution Reaction Activity through the Bifunctionality of Ni(OH)2/Metal Catalysts [J].
Danilovic, N. ;
Subbaraman, Ram ;
Strmcnik, D. ;
Chang, Kee-Chul ;
Paulikas, A. P. ;
Stamenkovic, V. R. ;
Markovic, Nenad M. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (50) :12495-12498
[9]   Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules [J].
Dinh, Cao-Thang ;
Jain, Ankit ;
de Arquer, F. Pelayo Garcia ;
De Luna, Phil ;
Li, Jun ;
Wang, Ning ;
Zheng, Xueli ;
Cai, Jun ;
Gregory, Benjamin Z. ;
Voznyy, Oleksandr ;
Zhang, Bo ;
Liu, Min ;
Sinton, David ;
Crumlin, Ethan J. ;
Sargent, Edward H. .
NATURE ENERGY, 2019, 4 (02) :107-114
[10]   Neutral Water Splitting Catalysis with a High FF Triple Junction Polymer Cell [J].
Elias, Xavier ;
Liu, Quan ;
Gimbert-Surinach, Carolina ;
Matheu, Roc ;
Mantilla-Perez, Paola ;
Martinez-Otero, Alberto ;
Sala, Xavier ;
Martorell, Jordi ;
Llobet, Antoni .
ACS CATALYSIS, 2016, 6 (05) :3310-3316