A NEW PROOF OF THE C∞ REGULARITY OF C2 CONFORMAL MAPPINGS ON THE HEISENBERG GROUP

被引:6
作者
Austin, Alex D. [1 ]
Tyson, Jeremy T. [2 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Box 951555, Los Angeles, CA 90095 USA
[2] Univ Illinois, Dept Math, 1409 West Green St, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
Heisenberg group; conformal mapping; Koranyi-Reimann flow; CARNOT GROUPS; EQUATIONS;
D O I
10.4064/cm7193-3-2017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a new proof for the C-infinity regularity of C-2 smooth conformal mappings of the sub-Riemannian Heisenberg group. Our proof avoids any use of nonlinear potential theory and relies only on hypoellipticity of Hormander operators and quasicon-formal flows. This approach is inspired by prior work of Sarvas and Liu.
引用
收藏
页码:217 / 228
页数:12
相关论文
共 16 条
[1]  
[Anonymous], 1962, TAMS
[2]  
Capogna L, 1997, COMMUN PUR APPL MATH, V50, P867, DOI 10.1002/(SICI)1097-0312(199709)50:9<867::AID-CPA3>3.0.CO
[3]  
2-3
[4]  
Capogna L., 2017, CONFORMALITY HARMONI
[5]   Conformality and Q-harmonicity in Carnot groups [J].
Capogna, Luca ;
Cowling, Michael .
DUKE MATHEMATICAL JOURNAL, 2006, 135 (03) :455-479
[6]   CONFORMAL MAPS OF CARNOT GROUPS [J].
Cowling, Michael G. ;
Ottazzi, Alessandro .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2015, 40 (01) :203-213
[7]  
Dairbekov N. S., 2000, SIB MAT ZH, V41, P567
[8]   HYPOELLIPTIC 2ND ORDER DIFFERENTIAL EQUATIONS [J].
HORMANDE.L .
ACTA MATHEMATICA UPPSALA, 1967, 119 (3-4) :147-&
[9]  
IWANIEC T, 2001, Oxford Math. Monogr.
[10]   FOUNDATIONS FOR THE THEORY OF QUASI-CONFORMAL MAPPINGS ON THE HEISENBERG-GROUP [J].
KORANYI, A ;
REIMANN, HM .
ADVANCES IN MATHEMATICS, 1995, 111 (01) :1-87