CrDoCo: Pixel-level Domain Transfer with Cross-Domain Consistency

被引:236
作者
Chen, Yun-Chun [1 ,2 ]
Lin, Yen-Yu [1 ]
Yang, Ming-Hsuan [3 ,4 ]
Huang, Jia-Bin [5 ]
机构
[1] Acad Sinica, Taipei, Taiwan
[2] Natl Taiwan Univ, Taipei, Taiwan
[3] UC Merced, Merced, CA USA
[4] Google, Mountain View, CA 94043 USA
[5] Virginia Tech, Blacksburg, VA USA
来源
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019) | 2019年
关键词
D O I
10.1109/CVPR.2019.00189
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unsupervised domain adaptation algorithms aim to transfer the knowledge learned from one domain to another (e.g., synthetic to real images). The adapted representations often do not capture pixel-level domain shifts that are crucial for dense prediction tasks (e.g., semantic segmentation). In this met; we present a novel pixel-wise adversarial domain adaptation algorithm. By leveraging image-to-image translation methods for data augmentation, our key insight is that while the translated images between domains may differ in styles, their predictions for the task should be consistent. We exploit this property and introduce a cross-domain consistency loss that enforces our adapted model to produce consistent predictions. Through extensive experimental results, we show that our method compares favorably against the state-of-the-art on a wide variety of unsupervised domain adaptation tasks.
引用
收藏
页码:1791 / 1800
页数:10
相关论文
共 52 条
[1]  
[Anonymous], DOMAIN STYLIZATION S
[2]  
[Anonymous], 2017, NIPS
[3]  
[Anonymous], 2015, ICCV
[4]   Unsupervised Pixel-Level Domain Adaptation with Generative Adversarial Networks [J].
Bousmalis, Konstantinos ;
Silberman, Nathan ;
Dohan, David ;
Erhan, Dumitru ;
Krishnan, Dilip .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :95-104
[5]   A Naturalistic Open Source Movie for Optical Flow Evaluation [J].
Butler, Daniel J. ;
Wulff, Jonas ;
Stanley, Garrett B. ;
Black, Michael J. .
COMPUTER VISION - ECCV 2012, PT VI, 2012, 7577 :611-625
[6]   Large-Scale Structure from Motion with Semantic Constraints of Aerial Images [J].
Chen, Yu ;
Wang, Yao ;
Lu, Peng ;
Chen, Yisong ;
Wang, Guoping .
PATTERN RECOGNITION AND COMPUTER VISION (PRCV 2018), PT I, 2018, 11256 :347-359
[7]  
Chen YH, 2017, AIP CONF PROC, V1812, DOI [10.1063/1.4975898, 10.1109/ICCV.2017.137]
[8]   The Cityscapes Dataset for Semantic Urban Scene Understanding [J].
Cordts, Marius ;
Omran, Mohamed ;
Ramos, Sebastian ;
Rehfeld, Timo ;
Enzweiler, Markus ;
Benenson, Rodrigo ;
Franke, Uwe ;
Roth, Stefan ;
Schiele, Bernt .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3213-3223
[9]  
Dai DX, 2018, IEEE INT C INTELL TR, P3819, DOI 10.1109/ITSC.2018.8569387
[10]  
Eigen D., 2014, ADV NEURAL INFORM PR, DOI DOI 10.5555/2969033.2969091