(2+1)-dimensional Gaussian solitons due to cascaded second-order non-linearities

被引:2
作者
Brenier, A [1 ]
机构
[1] Univ Lyon 1, Lab Physicochim Mat Luminescents, CNRS, UMR 5620, F-69622 Villeurbanne, France
关键词
D O I
10.1016/S0030-4018(98)00332-0
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We show that (2 + 1)-dimensional Gaussian solitons in media with cascaded second-order non-linearities can be obtained as solutions of first-order differential equations. These solitons have a plane wavefront and belong to a one-parameter family exhibited finally from the real root of a cubic polynomial. Outside this family a large choice of initial conditions exists such that spread of the waves due to diffraction does not occur. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:58 / 62
页数:5
相关论文
共 25 条
[1]   TRANSISTOR ACTION THROUGH NONLINEAR CASCADING IN TYPE-II INTERACTIONS [J].
ASSANTO, G .
OPTICS LETTERS, 1995, 20 (15) :1595-1597
[2]  
BACK Y, 1995, OPT LETT, V20, P2168
[3]   PARAMETRIC INTERACTION OF FOCUSED GAUSSIAN LIGHT BEAMS [J].
BOYD, GD ;
KLEINMAN, DA .
JOURNAL OF APPLIED PHYSICS, 1968, 39 (08) :3597-+
[4]   Numerical investigation of the CW end-pumped NYAB and LiNbO3:MgO:Nd self-doubling lasers [J].
Brenier, A .
OPTICS COMMUNICATIONS, 1996, 129 (1-2) :57-61
[5]   SOLITONS DUE TO 2ND-HARMONIC GENERATION [J].
BURYAK, AV ;
KIVSHAR, YS .
PHYSICS LETTERS A, 1995, 197 (5-6) :407-412
[6]   SPATIAL OPTICAL SOLITONS GOVERNED BY QUADRATIC NONLINEARITY [J].
BURYAK, AV ;
KIVSHAR, YS .
OPTICS LETTERS, 1994, 19 (20) :1612-1614
[7]   SELF-TRAPPING OF LIGHT-BEAMS AND PARAMETRIC SOLITONS IN DIFFRACTIVE QUADRATIC MEDIA [J].
BURYAK, AV ;
KIVSHAR, YS ;
STEBLINA, VV .
PHYSICAL REVIEW A, 1995, 52 (02) :1670-1674
[8]   Role of walk-off in solitary-wave propagation in materials with quadratic nonlinearity [J].
Capobianco, AD ;
Costantini, B ;
DeAngelis, C ;
Palma, AL ;
Nalesso, GF .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1997, 14 (10) :2602-2609
[9]   SELF-STARTING MODE-LOCKING OF A CW ND-YAG LASER USING CASCADED 2ND-ORDER NONLINEARITIES [J].
CERULLO, G ;
DESILVESTRI, S ;
MONGUZZI, A ;
SEGALA, D ;
MAGNI, V .
OPTICS LETTERS, 1995, 20 (07) :746-748
[10]  
FEJER MM, 1994, PHYS TODAY MAY, P25