Electrical resistance of N-gasket fractal networks

被引:19
作者
Boyle, Brighid [1 ]
Cekala, Kristin [1 ]
Ferrone, David [1 ]
Rifkin, Neil [1 ]
Teplyaev, Alexander [1 ]
机构
[1] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
关键词
self-similar Dirichlet form; energy form; fractal; polygasket; N-gasket; resistor network; electrical circuit;
D O I
10.2140/pjm.2007.233.15
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study self-similar local regular Dirichlet, or energy, forms on a class of fractal N-gaskets, which are generalizations of polygaskets. This is directly related to self-similar diffusions and resistor networks (electrical circuits). We prove existence and uniqueness, and also obtain explicit formulas for scaling factors and resistances (transition probabilities). We also study asymptotic behavior of these quantiles as the number of "sides" N of an N-gasket tends to infinity.
引用
收藏
页码:15 / 40
页数:26
相关论文
共 46 条
[1]  
Adams B, 2003, TRENDS MATH, P1
[2]   SOME PROPERTIES OF THE SPECTRUM OF THE SIERPINSKI GASKET IN A MAGNETIC-FIELD [J].
ALEXANDER, S .
PHYSICAL REVIEW B, 1984, 29 (10) :5504-5508
[3]  
[Anonymous], 1994, GRUYTER STUDIES MATH
[4]  
[Anonymous], 1984, CARUS MATH MONOGRAPH
[5]  
BAJORIN N, IN PRESS J PHYS A
[6]  
Barlow M., 1998, LECT NOTES MATH, V1690, P1
[7]  
BOULEAU N, 1991, GRUYTER STUDIES MATH, V14
[8]  
Denker M, 2002, MATH NACHR, V241, P32, DOI 10.1002/1522-2616(200207)241:1<32::AID-MANA32>3.0.CO
[9]  
2-5
[10]  
DYNKIN EB, 1969, MARKOV PROCESSES