Unrestricted Cesàro summability of d-dimensional Fourier series and Lebesgue points

被引:7
作者
Weisz, Ferenc [1 ]
机构
[1] Eotvos L Univ, Dept Numer Anal, Pazmany P Setany 1-C, H-1117 Budapest, Hungary
来源
CONSTRUCTIVE MATHEMATICAL ANALYSIS | 2021年 / 4卷 / 02期
关键词
Cesaro summability; strong Hardy-Littlewood maximal function; strong Lebesgue points; MARCINKIEWICZ-FEJER MEANS; EVERYWHERE CONVERGENCE; RESPECT;
D O I
10.33205/cma.859583
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize the classical Lebesgue's theorem to multi-dimensional functions. We prove that the Ces & agrave;ro means of the Fourier series of the multi-dimensional function f is an element of L-1(logL)(d-1)(T-d)superset of L-p(T-d)(1<p <=infinity) converge to f at each strong Lebesgue point.
引用
收藏
页码:179 / 185
页数:7
相关论文
共 21 条
[1]   SOME RECENT DEVELOPMENTS IN FOURIER-ANALYSIS AND HP-THEORY ON PRODUCT DOMAINS [J].
CHANG, SYA ;
FEFFERMAN, R .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 12 (01) :1-43
[2]   Wiener amalgams and pointwise summability of Fourier transforms and Fourier series [J].
Feichtinger, Hans G. ;
Weisz, Ferenc .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2006, 140 :509-536
[3]  
Fejér L, 1904, MATH ANN, V58, P51
[4]   Pointwise convergence of cone-like restricted two-dimensional (C, 1) means of trigonometric Fourier series [J].
Gat, Gyoergy .
JOURNAL OF APPROXIMATION THEORY, 2007, 149 (01) :74-102
[5]   Almost everywhere convergence of sequences of CesA ro and Riesz means of integrable functions with respect to the multidimensional Walsh system [J].
Gat, Gyoergy .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (02) :311-322
[6]   ON THE MARCINKIEWICZ-FEJER MEANS OF DOUBLE FOURIER SERIES WITH RESPECT TO THE WALSH-KACZMARZ SYSTEM [J].
Gat, Gyoergy ;
Goginava, Ushangi ;
Nagy, Karoly .
STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2009, 46 (03) :399-421
[7]   Marcinkiewicz-Fejer means of d-dimensional Walsh-Fourier series [J].
Goginava, U .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 307 (01) :206-218
[8]  
Goginava U., 2006, East J. Approx., V12, P295
[9]   Almost everywhere convergence of (C, α)-means of cubical partial sums of d-dimensional Walsh-Fourier series [J].
Goginava, Ushangi .
JOURNAL OF APPROXIMATION THEORY, 2006, 141 (01) :8-28
[10]  
Jessen B., 1935, Fundam. Math, V25, P217, DOI DOI 10.4064/FM-25-1-217-234