Ultrafast Plasmonic Graphene Photodetector Based on the Channel Photothermoelectric Effect

被引:45
作者
Gosciniak, Jacek [1 ]
Rasras, Mahmoud [1 ]
Khurgin, Jacob B. [2 ]
机构
[1] New York Univ Abu Dhabi, Abu Dhabi, U Arab Emirates
[2] Johns Hopkins Univ, Baltimore, MD 21218 USA
关键词
graphene; photodetectors; plasmonics; photothermoelectric effect; integrated photonics; HIGH-RESPONSIVITY; BROAD-BAND; GENERATION;
D O I
10.1021/acsphotonics.9b01585
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We propose an ultrafast on-chip CMOS compatible graphene plasmonic photodetector based on the photothermoelectric effect (PTE) that occurs across an entire homogeneous photodetector incorporates the long-range dielectric-loaded surface plasmon polariton (LR-DLSPP) waveguide with a metal stripegraphene channel and operating beyond 500 GHz. The proposed serving simultaneously as a plasmon supporting metallic material and one of the metal electrodes. The large in-plane component of the transverse magnetic (TM) plasmonic mode can couple efficiently to the graphene causing large electron temperature increases across an entire graphene channel with a maximum located at the metal stripe edge. As a result, the electronic temperatures exceeding 6000 K at input power of only a few tens of mu W can be obtained at the telecom wavelength of 1550 nm. Even with limitations such as the melting temperature of graphene (T = 4510 K), a responsivity exceeding at least 200 A/W is achievable at a telecom wavelength of 1550 nm. It is also shown that, under certain operation conditions, the PTE channel photocurrent can be isolated from photovoltaic and p-n junction PTE contributions providing an efficient way for optimizing the overall photodetector performance.
引用
收藏
页码:488 / 498
页数:21
相关论文
共 64 条
[1]  
[Anonymous], 2014, GRAPHENE 2D MAT
[2]   Hybrid graphene plasmonic waveguide modulators [J].
Ansell, D. ;
Radko, I. P. ;
Han, Z. ;
Rodriguez, F. J. ;
Bozhevolnyi, S. I. ;
Grigorenko, A. N. .
NATURE COMMUNICATIONS, 2015, 6
[3]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/NPHOTON.2010.186, 10.1038/nphoton.2010.186]
[4]   Ultrafast collinear scattering and carrier multiplication in graphene [J].
Brida, D. ;
Tomadin, A. ;
Manzoni, C. ;
Kim, Y. J. ;
Lombardo, A. ;
Milana, S. ;
Nair, R. R. ;
Novoselov, K. S. ;
Ferrari, A. C. ;
Cerullo, G. ;
Polini, M. .
NATURE COMMUNICATIONS, 2013, 4
[5]   Fast and Sensitive Terahertz Detection Using an Antenna-Integrated Graphene pn Junction [J].
Castilla, Sebastian ;
Terres, Bernat ;
Autore, Marta ;
Viti, Leonardo ;
Li, Jian ;
Nikitin, Alexey Y. ;
Vangelidis, Ioannis ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Lidorikis, Elefterios ;
Vitiello, Miriam S. ;
Hillenbrand, Rainer ;
Tielrooij, Klaas-Jan ;
Koppen, Frank H. L. .
NANO LETTERS, 2019, 19 (05) :2765-2773
[6]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[7]  
Chrostowski L, 2015, SILICON PHOTONICS DESIGN, P1
[8]   Ultra-compact integrated graphene plasmonic photodetector with bandwidth above 110 GHz [J].
Ding, Yunhong ;
Cheng, Zhao ;
Zhu, Xiaolong ;
Yvind, Kresten ;
Dong, Jianji ;
Galili, Michael ;
Hu, Hao ;
Mortensen, N. Asger ;
Xiao, Sanshui ;
Oxenlowe, Leif Katsuo .
NANOPHOTONICS, 2020, 9 (02) :317-325
[9]   Surface Plasmon Polariton Graphene Photodetectors [J].
Echtermeyer, T. J. ;
Milana, S. ;
Sassi, U. ;
Eiden, A. ;
Wu, M. ;
Lidorikis, E. ;
Ferrari, A. C. .
NANO LETTERS, 2016, 16 (01) :8-20
[10]   Photothermoelectric and Photoelectric Contributions to Light Detection in Metal-Graphene-Metal Photodetectors [J].
Echtermeyer, T. J. ;
Nene, P. S. ;
Trushin, M. ;
Gorbachev, R. V. ;
Eiden, A. L. ;
Milana, S. ;
Sun, Z. ;
Schliemann, J. ;
Lidorikis, E. ;
Novoselov, K. S. ;
Ferrari, A. C. .
NANO LETTERS, 2014, 14 (07) :3733-3742