Adaptation of homotopy-perturbation method for numeric-analytic solution of system of ODEs

被引:38
作者
Hashim, I. [1 ]
Chowdhury, M. S. H. [1 ]
机构
[1] Univ Kebangsaan Malaysia, Sch Math Sci, Bangi 43600, Selangor, Malaysia
关键词
homotopy-perturbation method; Runge-Kutta method; system of ODEs;
D O I
10.1016/j.physleta.2007.07.067
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A new reliable algorithm based on an adaptation of the standard Homotopy-Perturbation Method (HPM) is presented. The HPM is treated, for the first time, as an algorithm in a sequence of intervals (i.e., time step) for finding accurate approximate solutions of linear and nonlinear systems of ODEs. Numerical comparisons between the Multistage Homotopy-Perturbation Method (MHPM) and the available exact solution and the classical fourth-order Runge-Kutta (RK4) method reveal that the new technique is a promising tool for linear and nonlinear systems of ODEs. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:470 / 481
页数:12
相关论文
共 25 条
[1]   Further accuracy tests on Adomian decomposition method for chaotic systems [J].
Abdulaziz, O. ;
Noor, N. F. M. ;
Hashim, I. ;
Noorani, M. S. M. .
CHAOS SOLITONS & FRACTALS, 2008, 36 (05) :1405-1411
[2]  
Beltrami Edward., 1987, MATH DYNAMIC MODELIN
[3]   Solutions of time-dependent Emden-Fowler type equations by homotopy-perturbation method [J].
Chowdhury, M. S. H. ;
Hashim, I. .
PHYSICS LETTERS A, 2007, 368 (3-4) :305-313
[4]   Application of homotopy-perturbation method to nonlinear population dynamics models [J].
Chowdhury, M. S. H. ;
Hashim, I. ;
Abdulaziz, O. .
PHYSICS LETTERS A, 2007, 368 (3-4) :251-258
[5]   Solutions of a class of singular second-order IVPs by homotopy-perturbation method [J].
Chowdhury, M. S. H. ;
Hashim, I. .
PHYSICS LETTERS A, 2007, 365 (5-6) :439-447
[6]  
El-Shahed M., 2005, INT J NONLINEAR SCI, V6, P63
[7]   Application of homotopy-perturbation and variational iteration methods to nonlinear heat transfer and porous media equations [J].
Ganji, D. D. ;
Sadighi, A. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 207 (01) :24-34
[8]  
Ganji DD, 2006, INT J NONLIN SCI NUM, V7, P411
[9]   An adaptation of adomian decomposition for numeric-analytic integration of strongly nonlinear and chaotic oscillators [J].
Ghosh, S. ;
Roy, A. ;
Roy, D. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (4-6) :1133-1153
[10]   Accuracy of the Adomian decomposition method applied to the Lorenz system [J].
Hashim, I ;
Noorani, MSM ;
Ahmad, R ;
Bakar, SA ;
Ismail, ES ;
Zakaria, AM .
CHAOS SOLITONS & FRACTALS, 2006, 28 (05) :1149-1158