ON HIGH-ORDER MODEL REGULARIZATION FOR CONSTRAINED OPTIMIZATION

被引:34
作者
Martinez, Jose Mario [1 ]
机构
[1] Univ Estadual Campinas, Inst Math Stat & Sci Comp, CP 6065, BR-13081970 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
nonlinear programming; high-order regularization; complexity; TRUST-REGION METHODS; EVALUATION COMPLEXITY; DESCENT;
D O I
10.1137/17M1115472
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In two recent papers regularization methods based on Taylor polynomial models for minimization were proposed that only rely on Holder conditions on the higher-order employedderivatives. Grapiglia and Nesterov considered cubic regularization with a sufficient descent condition that uses the current gradient and resembles the classical Armijo's criterion. Cartis, Gould, and Toint used Taylor models with arbitrary-order regularization and defined methods that tackle convex constraints employing the descent criterion that compares actual reduction with predicted reduction. The methods presented in this paper consider general (not necessarily Taylor) models of arbitrary order, employ a very mild descent criterion, and handle general, nonnecessarily convex, constraints. Complexity results are compatible with the ones presented in the papers mentioned above.
引用
收藏
页码:2447 / 2458
页数:12
相关论文
共 31 条
[1]   On sequential optimality conditions for smooth constrained optimization [J].
Andreani, Roberto ;
Haeser, Gabriel ;
Martinez, J. M. .
OPTIMIZATION, 2011, 60 (05) :627-641
[2]   A NEW SEQUENTIAL OPTIMALITY CONDITION FOR CONSTRAINED OPTIMIZATION AND ALGORITHMIC CONSEQUENCES [J].
Andreani, Roberto ;
Martinez, J. M. ;
Svaiter, B. F. .
SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (06) :3533-3554
[3]  
[Anonymous], 1999, Athena scientific Belmont
[4]  
Birgin EG, 2014, FUND ALGORITHMS, P1, DOI 10.1137/1.9781611973365
[5]   THE USE OF QUADRATIC REGULARIZATION WITH A CUBIC DESCENT CONDITION FOR UNCONSTRAINED OPTIMIZATION [J].
Birgin, E. G. ;
Martinez, J. M. .
SIAM JOURNAL ON OPTIMIZATION, 2017, 27 (02) :1049-1074
[6]   Worst-case evaluation complexity for unconstrained nonlinear optimization using high-order regularized models [J].
Birgin, E. G. ;
Gardenghi, J. L. ;
Martinez, J. M. ;
Santos, S. A. ;
Toint, Ph. L. .
MATHEMATICAL PROGRAMMING, 2017, 163 (1-2) :359-368
[7]   EVALUATION COMPLEXITY FOR NONLINEAR CONSTRAINED OPTIMIZATION USING UNSCALED KKT CONDITIONS AND HIGH-ORDER MODELS [J].
Birgin, E. G. ;
Gardenghi, J. L. ;
Martinez, J. M. ;
Santos, S. A. ;
Toint, Ph. L. .
SIAM JOURNAL ON OPTIMIZATION, 2016, 26 (02) :951-967
[8]   ON THE COMPLEXITY OF STEEPEST DESCENT, NEWTON'S AND REGULARIZED NEWTON'S METHODS FOR NONCONVEX UNCONSTRAINED OPTIMIZATION PROBLEMS [J].
Cartis, C. ;
Gould, N. I. M. ;
Toint, Ph. L. .
SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (06) :2833-2852
[9]  
Cartis C., OPTIM METHO IN PRESS
[10]   Adaptive cubic regularisation methods for unconstrained optimization. Part II: worst-case function- and derivative-evaluation complexity [J].
Cartis, Coralia ;
Gould, Nicholas I. M. ;
Toint, Philippe L. .
MATHEMATICAL PROGRAMMING, 2011, 130 (02) :295-319