Geometric quantum speed limits: a case for Wigner phase space

被引:69
作者
Deffner, Sebastian [1 ]
机构
[1] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA
来源
NEW JOURNAL OF PHYSICS | 2017年 / 19卷
基金
美国国家科学基金会;
关键词
quantum speed limit; Heisenberg uncertainty; Wigner function; MASTER EQUATION; ENERGY; TIME;
D O I
10.1088/1367-2630/aa83dc
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The quantum speed limit is a fundamental upper bound on the speed of quantum evolution. However, the actual mathematical expression of this fundamental limit depends on the choice of a measure of distinguishability of quantum states. We show that quantum speed limits are qualitatively governed by the Schatten-p-norm of the generator of quantum dynamics. Since computing Schatten-p-norms can be mathematically involved, we then develop an alternative approach in Wigner phase space. We find that the quantum speed limit in Wigner space is fully equivalent to expressions in density operator space, but that the new bound is significantly easier to compute. Our results are illustrated for the parametric harmonic oscillator and for quantum Brownian motion.
引用
收藏
页数:9
相关论文
共 56 条
[41]   Quantum coherence sets the quantum speed limit for mixed states [J].
Mondal, Debasis ;
Datta, Chandan ;
Sazim, Sk .
PHYSICS LETTERS A, 2016, 380 (5-6) :689-695
[42]   Speeding up and slowing down the relaxation of a qubit by optimal control [J].
Mukherjee, Victor ;
Carlini, Alberto ;
Mari, Andrea ;
Caneva, Tommaso ;
Montangero, Simone ;
Calarco, Tommaso ;
Fazio, Rosario ;
Giovannetti, Vittorio .
PHYSICAL REVIEW A, 2013, 88 (06)
[43]   HOW FAST CAN A QUANTUM STATE CHANGE WITH TIME [J].
PFEIFER, P .
PHYSICAL REVIEW LETTERS, 1993, 70 (22) :3365-3368
[44]   Generalized Geometric Quantum Speed Limits [J].
Pires, Diego Paiva ;
Cianciaruso, Marco ;
Celeri, Lucas C. ;
Adesso, Gerardo ;
Soares-Pinto, Diogo O. .
PHYSICAL REVIEW X, 2016, 6 (02)
[45]   Quantum speed limit and optimal evolution time in a two-level system [J].
Poggi, P. M. ;
Lombardo, F. C. ;
Wisniacki, D. A. .
EPL, 2013, 104 (04)
[46]  
Preskill J., 2012, QUANTUM COMPUTING EN
[47]   Non-local propagation of correlations in quantum systems with long-range interactions [J].
Richerme, Philip ;
Gong, Zhe-Xuan ;
Lee, Aaron ;
Senko, Crystal ;
Smith, Jacob ;
Foss-Feig, Michael ;
Michalakis, Spyridon ;
Gorshkov, Alexey V. ;
Monroe, Christopher .
NATURE, 2014, 511 (7508) :198-+
[48]   Defining and detecting quantum speedup [J].
Ronnow, Troels F. ;
Wang, Zhihui ;
Job, Joshua ;
Boixo, Sergio ;
Isakov, Sergei V. ;
Wecker, David ;
Martinis, John M. ;
Lidar, Daniel A. ;
Troyer, Matthias .
SCIENCE, 2014, 345 (6195) :420-424
[49]   Superadiabatic Controlled Evolutions and Universal Quantum Computation [J].
Santos, Alan C. ;
Sarandy, Marcelo S. .
SCIENTIFIC REPORTS, 2015, 5
[50]  
Schleich W. P., 2011, Quantum Optics in Phase Space