The global Gevrey regularity of the rotation two-component Camassa-Holm system

被引:0
作者
Guo, Yingying [1 ]
Yin, Zhaoyang [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Peoples R China
[2] Macau Univ Sci & Technol, Fac Informat Technol, Macau, Peoples R China
关键词
The rotation two-component; Camassa-Holm system; Global Gevrcy regularity; Gevrey class; BOUNDARY VALUE-PROBLEMS; BLOW-UP PHENOMENA; SHALLOW-WATER EQUATION; WELL-POSEDNESS; CONSERVATIVE SOLUTIONS; WEAK SOLUTIONS; WAVE-BREAKING; EXISTENCE; ANALYTICITY; STABILITY;
D O I
10.1016/j.jmaa.2020.123933
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the rotation two-component Camassa-Holm system, which is a model in the equatorial water waves with the effect of the Coriolis force. We establish the global Gevrey regularity of the rotation two-component Camassa-Holm system in Gevrey class G(tau) with (tau )>= 1 in time. Our obtained result improves considerably the recent result in [45]. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
[31]   Global periodic conservative solutions of a periodic modified two-component Camassa-Holm equation [J].
Tan, Wenke ;
Yin, Zhaoyang .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 261 (05) :1204-1226
[32]   Symmetries and multipeakon solutions for the modified two-component Camassa-Holm system [J].
Grunert, Katrin ;
Raynaud, Xavier .
NON-LINEAR PARTIAL DIFFERENTIAL EQUATIONS, MATHEMATICAL PHYSICS, AND STOCHASTIC ANALYSIS: THE HELGE HOLDEN ANNIVERSARY VOLME, 2018, :227-260
[33]   Dissipative solutions for the modified two-component Camassa-Holm system [J].
Wang, Yujuan ;
Song, Yongduan .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2014, 21 (03) :339-360
[34]   Persistence Properties and Unique Continuation of Solutions to a Two-component Camassa-Holm Equation [J].
Guo, Zhengguang ;
Ni, Lidiao .
MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2011, 14 (02) :101-114
[35]   On the Cauchy problem for the two-component Camassa-Holm system [J].
Gui, Guilong ;
Liu, Yue .
MATHEMATISCHE ZEITSCHRIFT, 2011, 268 (1-2) :45-66
[36]   Global dissipative solutions of the two-component Camassa-Holm system for initial data with nonvanishing asymptotics [J].
Grunert, Katrin ;
Holden, Helge ;
Raynaud, Xavier .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2014, 17 :203-244
[37]   Asymptotic profiles of solutions to the two-component Camassa-Holm system [J].
Guo, Zhengguang .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (01) :1-6
[38]   Persistence properties of the solutions to a generalized two-component Camassa-Holm shallow water system [J].
Zhu, Yuan ;
Fu, Fengyun .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 128 :77-85
[39]   The Cauchy problem for the modified two-component Camassa-Holm system in critical Besov space [J].
Yan, Wei ;
Li, Yongsheng .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2015, 32 (02) :443-469
[40]   WELL-POSEDNESS FOR A MODIFIED TWO-COMPONENT CAMASSA-HOLM SYSTEM IN CRITICAL SPACES [J].
Yan, Kai ;
Yin, Zhaoyang .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (04) :1699-1712