The global Gevrey regularity of the rotation two-component Camassa-Holm system

被引:0
作者
Guo, Yingying [1 ]
Yin, Zhaoyang [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Peoples R China
[2] Macau Univ Sci & Technol, Fac Informat Technol, Macau, Peoples R China
关键词
The rotation two-component; Camassa-Holm system; Global Gevrcy regularity; Gevrey class; BOUNDARY VALUE-PROBLEMS; BLOW-UP PHENOMENA; SHALLOW-WATER EQUATION; WELL-POSEDNESS; CONSERVATIVE SOLUTIONS; WEAK SOLUTIONS; WAVE-BREAKING; EXISTENCE; ANALYTICITY; STABILITY;
D O I
10.1016/j.jmaa.2020.123933
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the rotation two-component Camassa-Holm system, which is a model in the equatorial water waves with the effect of the Coriolis force. We establish the global Gevrey regularity of the rotation two-component Camassa-Holm system in Gevrey class G(tau) with (tau )>= 1 in time. Our obtained result improves considerably the recent result in [45]. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
[21]   BREAKING WAVES FOR THE PERIODIC TWO-COMPONENT CAMASSA-HOLM SYSTEM [J].
Guo, Fei .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (07) :2407-2415
[22]   Well-posedness of a class of solutions to an integrable two-component Camassa-Holm system [J].
Guan, Chunxia ;
Zhu, Hao .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 470 (01) :413-433
[23]   On the global existence and wave-breaking criteria for the two-component Camassa-Holm system [J].
Gui, Guilong ;
Liu, Yue .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (12) :4251-4278
[24]   Global conservative solutions of a modified two-component Camassa-Holm shallow water system [J].
Tan, Wenke ;
Yin, Zhaoyang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (12) :3558-3582
[25]   Uniqueness of global conservative weak solutions for the modified two-component Camassa-Holm system [J].
Guan, Chunxia .
JOURNAL OF EVOLUTION EQUATIONS, 2018, 18 (02) :1003-1024
[26]   Non-uniform dependence on initial data of a modified periodic two-component Camassa-Holm system [J].
Lv, Guangying ;
Wang, Xiaohuan .
ZAMM-Zeitschrift fur Angewandte Mathematik und Mechanik, 2015, 95 (05) :444-456
[27]   Qualitative analysis for a two-component Camassa-Holm system with high order nonlinearity [J].
Han, Xuanxuan ;
Wang, JinRong .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 551 (02)
[28]   Wave Breaking and Global Existence for a Generalized Two-Component Camassa-Holm System [J].
Chen, Robin Ming ;
Liu, Yue .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (06) :1381-1416
[29]   Global conservative and multipeakon conservative solutions for the two-component Camassa-Holm system [J].
Wang, Yujuan ;
Song, Yongduan .
BOUNDARY VALUE PROBLEMS, 2013,
[30]   GLOBAL DISSIPATIVE SOLUTIONS FOR THE TWO-COMPONENT CAMASSA-HOLM SHALLOW WATER SYSTEM [J].
Wang, Yujuan ;
Song, Yongduan .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,