Using adaptive neuro-fuzzy inference system for hydrological time series prediction

被引:108
|
作者
Zounemat-Kermani, Mohammad [1 ]
Teshnehlab, Mohammad [1 ]
机构
[1] KN Toosi Univ, Dept Elect Engn, Tehran, Iran
关键词
neuro-fuzzy network; Sugeno fuzzy inference system; time series prediction; river flow;
D O I
10.1016/j.asoc.2007.07.011
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Conventionally, the multiple linear regression procedure has been known as the most popular models in simulating hydrological time series. However, when the nonlinear phenomenon is significant, the multiple linear will fail to develop an appropriate predictive model. Recently, intelligence system approaches such as artificial neural network (ANN) and neuro-fuzzy methods have been used successfully for time series modelling. In most instances for neural networks, multi layer perceptrons (MLPs) that are trained with the back-propagation algorithm have been used. The major shortcoming of this approach is that the knowledge contained in the trained networks is difficult to interpret. Using neuro-fuzzy approaches, which enable the information that is stored in trained networks to be expressed in the form of a fuzzy rule base, would help to overcome this issue. In the present study, a time series neuro-fuzzy model is proposed that is capable of exploiting the strengths of traditional time series approaches. The aim of this article is to investigate the potential of a neuro-fuzzy system with a Sugeno inference engine, considering different numbers of membership functions. Three rivers have been selected and daily prediction for them was applied. For better judgment, outcomes of the network have been compared to an autoregressive model. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:928 / 936
页数:9
相关论文
共 50 条
  • [31] Soymilk isoflavone conversion prediction by adaptive neuro-fuzzy inference system
    Department of Electrical Engineering, Fu Jen Catholic University, New Taipei City, Taiwan
    不详
    不详
    Trans. ASABE, 6 (1853-1860):
  • [32] Application of the adaptive neuro-fuzzy inference system for prediction of soil liquefaction
    Xinhua Xue
    Xingguo Yang
    Natural Hazards, 2013, 67 : 901 - 917
  • [33] An Energy Prediction Method using Adaptive Neuro-Fuzzy Inference System and Genetic Algorithms
    Kampouropoulos, K.
    Cardenas, J. J.
    Giacometto, F.
    Romeral, L.
    2013 IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2013,
  • [34] Shear strength prediction of RC beams using adaptive neuro-fuzzy inference system
    Naderpour, H.
    Mirrashid, M.
    SCIENTIA IRANICA, 2020, 27 (02) : 657 - 670
  • [35] Application of Adaptive Neuro-fuzzy Inference System for road accident prediction
    Mehdi Hosseinpour
    Ahmad Shukri Yahaya
    Seyed Mohammadreza Ghadiri
    Joewono Prasetijo
    KSCE Journal of Civil Engineering, 2013, 17 : 1761 - 1772
  • [36] Application of Adaptive Neuro-Fuzzy Inference System in Flammability Parameter Prediction
    Mensah, Rhoda Afriyie
    Xiao, Jie
    Das, Oisik
    Jiang, Lin
    Xu, Qiang
    Alhassan, Mohammed Okoe
    POLYMERS, 2020, 12 (01)
  • [37] Noise cancellation by using Adaptive Neuro-Fuzzy Inference System
    Zhang, Bao-cheng
    Xu, Xie-xian
    Chuan Bo Li Xue/Journal of Ship Mechanics, 2000, 4 (04): : 62 - 67
  • [38] Application of Adaptive Neuro-Fuzzy Inference System for Diabetes Classification and Prediction
    Geman, Oana
    Chiuchisan, Iuliana
    Toderean , Roxana
    2017 IEEE INTERNATIONAL CONFERENCE ON E-HEALTH AND BIOENGINEERING CONFERENCE (EHB), 2017, : 639 - 642
  • [39] Geoacoustic inversion using adaptive neuro-fuzzy inference system
    Satyanarayana Yegireddi
    Arvind Kumar
    Computational Geosciences, 2008, 12 : 513 - 523
  • [40] Prediction of the Performance of a Solar Thermal Energy System Using Adaptive Neuro-Fuzzy Inference System
    Yaici, Wahiba
    Entchev, Evgueniy
    2014 INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY RESEARCH AND APPLICATION (ICRERA), 2014, : 601 - 604