Cavity QED treatment of interactions between a metal nanoparticle and a dipole emitter

被引:240
作者
Waks, Edo [1 ]
Sridharan, Deepak [1 ]
机构
[1] Univ Maryland, Inst Res Elect & Appl Phys, Joint Quantum Inst, College Pk, MD 20742 USA
来源
PHYSICAL REVIEW A | 2010年 / 82卷 / 04期
基金
美国国家科学基金会;
关键词
QUANTUM-DOT; SINGLE MOLECULES;
D O I
10.1103/PhysRevA.82.043845
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We derive a full quantum optical model of interactions between a dipole and a metal nanoparticle. The electromagnetic field of the nanoparticle is quantized from the time-harmonic solution to the wave equation. We derive an analytical expression for the dipole-field coupling strength and the Purcell factor. The semiclassical theory, derived from the Maxwell-Bloch equations, is compared to the full quantum calculations based on numerical solution of the master equation. The metal nanoparticle-dipole system is found to be in an interesting regime of cavity quantum electrodynamics where dipole decay is dominated by dephasing, but the dipole-field coupling strength is still strong enough to achieve large cooperativity. In the presence of large dephasing, we show that simple semiclassical theory fails to predict the correct scattered field spectrum even in the weak-field limit. We reconcile this discrepancy by applying the random-phase-jump approach to the cavity photon number instead of the dipole operator. We also investigate the quantum fluctuations of the scattered field and show that they are significantly dependent on the dephasing rate.
引用
收藏
页数:14
相关论文
共 36 条
[1]   Generation of single optical plasmons in metallic nanowires coupled to quantum dots [J].
Akimov, A. V. ;
Mukherjee, A. ;
Yu, C. L. ;
Chang, D. E. ;
Zibrov, A. S. ;
Hemmer, P. R. ;
Park, H. ;
Lukin, M. D. .
NATURE, 2007, 450 (7168) :402-406
[2]   Enhancement and quenching of single-molecule fluorescence [J].
Anger, P ;
Bharadwaj, P ;
Novotny, L .
PHYSICAL REVIEW LETTERS, 2006, 96 (11)
[3]  
[Anonymous], QUANTUM OPTICS
[4]   Optical response of strongly coupled quantum dot - Metal nanoparticle systems: Double peaked fano structure and bistability [J].
Artuso, Ryan D. ;
Bryantt, Garnett W. .
NANO LETTERS, 2008, 8 (07) :2106-2111
[5]   Direct Observation of the Two Lowest Exciton Zero-Phonon Lines in Single CdSe/ZnS Nanocrystals [J].
Biadala, L. ;
Louyer, Y. ;
Tamarat, Ph. ;
Lounis, B. .
PHYSICAL REVIEW LETTERS, 2009, 103 (03)
[6]   Spontaneous light emission in complex nanostructures [J].
Blanco, LA ;
de Abajo, FJG .
PHYSICAL REVIEW B, 2004, 69 (20) :205414-1
[7]  
Carmichael H., 1993, An Open Systems Approach to Quantum Optics: Lectures Presented at the Universite Libre de Bruxelles
[8]  
CARMICHAEL HJ, 1998, STAT METHODS QUANTUM, V1, pCH1
[9]   Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle [J].
Carminati, R ;
Greffet, JJ ;
Henkel, C ;
Vigoureux, JM .
OPTICS COMMUNICATIONS, 2006, 261 (02) :368-375
[10]   A single-photon transistor using nanoscale surface plasmons [J].
Chang, Darrick E. ;
Sorensen, Anders S. ;
Demler, Eugene A. ;
Lukin, Mikhail D. .
NATURE PHYSICS, 2007, 3 (11) :807-812