Sonochemical oxidation of multiwalled carbon nanotubes

被引:307
作者
Xing, YC [1 ]
Li, L
Chusuei, CC
Hull, RV
机构
[1] Univ Missouri, Dept Chem & Biol Engn, Rolla, MO 65409 USA
[2] Univ Missouri, Dept Chem, Rolla, MO 65409 USA
关键词
D O I
10.1021/la047268e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Functionalization of carbon nanotubes (CNTs) is important for enhancing deposition of metal nanoparticles in the fabrication of supported catalysts. A facile approach for oxidizing CNTs is presented using a sonochemical method to promote the density of surface functional groups. This was successfully employed in a previous study [J. Phys. Chem. B 2004, 108, 19255] to prepare highly dispersed, high-loading Pt nanoparticles on CNTs as fuel cell catalysts. X-ray photoelectron spectroscopy (XPS), transmission electron microscopy, cyclic voltammetry, and settling speeds were used to characterize the degree of surface functionalization and coverage. The sonochemical method effectively functionalized the CNTs. A mixture of -C-O-/-C=O and -COO- was observed along with evidence for weakly bound CO at longer treatment times. The integrated XPS C is core level peak area ratios of the oxidized-to-graphitic C oxidation states, as well as the atom % oxygen from the O 1s level, showed an increase in peak intensity (attributed to -COx) with increased sonication times from 1 to 8 h; the increase in C surface oxidation correlated well with the measured atom %. Most of the CNT surface oxidation occurred between 1 and 2 h. The sonochemically treated CNTs were also studied by cyclic voltammetry and settling experiments, and the results were consistent with the XPS observations.
引用
收藏
页码:4185 / 4190
页数:6
相关论文
共 43 条
[1]   Work functions and surface functional groups of multiwall carbon nanotubes [J].
Ago, H ;
Kugler, T ;
Cacialli, F ;
Salaneck, WR ;
Shaffer, MSP ;
Windle, AH ;
Friend, RH .
JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103 (38) :8116-8121
[2]  
Ajayan PM, 2000, ADV MATER, V12, P750, DOI 10.1002/(SICI)1521-4095(200005)12:10<750::AID-ADMA750>3.0.CO
[3]  
2-6
[4]   OPENING CARBON NANOTUBES WITH OXYGEN AND IMPLICATIONS FOR FILLING [J].
AJAYAN, PM ;
EBBESEN, TW ;
ICHIHASHI, T ;
IIJIMA, S ;
TANIGAKI, K ;
HIURA, H .
NATURE, 1993, 362 (6420) :522-525
[5]  
Bonard JM, 2001, ADV MATER, V13, P184, DOI 10.1002/1521-4095(200102)13:3<184::AID-ADMA184>3.0.CO
[6]  
2-I
[7]  
BRUNDLE CR, 1984, ELECT SPECTROSCOPY T
[8]   Metal-nanocluster-filled carbon nanotubes: Catalytic properties and possible applications in electrochemical energy storage and production [J].
Che, GL ;
Lakshmi, BB ;
Martin, CR ;
Fisher, ER .
LANGMUIR, 1999, 15 (03) :750-758
[9]   Carbon nanotubule membranes for electrochemical energy storage and production [J].
Che, GL ;
Lakshmi, BB ;
Fisher, ER ;
Martin, CR .
NATURE, 1998, 393 (6683) :346-349
[10]  
Dresselhaus MS, 2001, CARBON NANOTUBES SYN