Mixed-state parameterization and two-qubit entanglement

被引:0
作者
Kong, Otto C. W. [1 ,2 ]
Ting, Hock King [1 ,2 ]
机构
[1] Natl Cent Univ, Dept Phys, Chungli 32054, Taiwan
[2] Natl Cent Univ, Ctr High Energy & High Field Phys, Chungli 32054, Taiwan
关键词
Mixed-state parameterization; Two-qubit entanglement; Concurrence; Negativity; SEPARABILITY;
D O I
10.1007/s11128-022-03589-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A generic scheme for the parameterization of mixed-state systems is introduced. A slightly modified version specially for bipartite systems is then given, and especially applied to a two-qubit system. Various features of two-qubit entanglement are analyzed based on the scheme. Our formulation of the parameterization and the analysis of entanglement properties exploit the interplay between pure states as Hilbert space vectors and pure as well as mixed states as density matrices. Explicit entanglement results are presented, in terms of negativity and concurrence, for all two-qubit mixed states with one single parameter/coordinate among the full set of fifteen being zero and a few other interesting cases.
引用
收藏
页数:16
相关论文
共 14 条
  • [1] Bengtsson I., 2006, GEOMETRY QUANTUM STA
  • [2] Parametrizations of density matrices
    Bruening, E.
    Makela, H.
    Messina, A.
    Petruccione, F.
    [J]. JOURNAL OF MODERN OPTICS, 2012, 59 (01) : 1 - 20
  • [3] Separability of mixed states: Necessary and sufficient conditions
    Horodecki, M
    Horodecki, P
    Horodecki, R
    [J]. PHYSICS LETTERS A, 1996, 223 (1-2) : 1 - 8
  • [4] Quantum entanglement
    Horodecki, Ryszard
    Horodecki, Pawel
    Horodecki, Michal
    Horodecki, Karol
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (02) : 865 - 942
  • [5] Preserving entanglement under perturbation and sandwiching all separable states
    Lockhart, RB
    Steiner, MJ
    [J]. PHYSICAL REVIEW A, 2002, 65 (02): : 1 - 4
  • [6] Ordering two-qubit states with concurrence and negativity
    Miranowicz, A
    Grudka, A
    [J]. PHYSICAL REVIEW A, 2004, 70 (03): : 032326 - 1
  • [7] Nielsen M.A., 2010, Quantum Computation and Quantum Information, V10th
  • [8] Separability criterion for density matrices
    Peres, A
    [J]. PHYSICAL REVIEW LETTERS, 1996, 77 (08) : 1413 - 1415
  • [9] A comparison of the entanglement measures negativity and concurrence
    Verstraete, F
    Audenaert, K
    Dehaene, J
    De Moor, B
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (47): : 10327 - 10332
  • [10] Computable measure of entanglement
    Vidal, G
    Werner, RF
    [J]. PHYSICAL REVIEW A, 2002, 65 (03): : 1 - 11